إلكترون

الإلكترون[8] (ملاحظة 1) (رمزه: -e) هو جسيم دون ذري كروي الشكل تقريباً مكون للذرة ويحمل شحنة كهربائية سالبة. ولم يكن من المعروف بأن لديها مكونات أو جسيمات أصغر، لذا فقد اعتبرت بأنها جسيمات أولية.[2] فالإلكترون لديه كتلة تعادل تقريبًا 1/1836 من كتلة البروتون.[9] الزخم الزاوي الحقيقي (وهو اللف المغزلي) للإلكترون هو قيمة نصف عدد صحيح من وحدة ħ، مما يعني بأنه فرميون. ويسمى الجسيم المضاد للإلكترون بالبوزيترون، وهو مطابق للإلكترون عدا أنه معاكس له بالشحنة الكهربائية والشحنات الأخرى. عند اصطدام الإلكترون بالبوزترون فإنهما إما يبعثران بعضهما البعض أو أن يفنيان، مما ينتج عن ذلك زوج أو أكثر من فوتونات أشعة غاما. تنتمي الإلكترونات إلى الجيل الأول لأسرة جسيمات ليبتون[10]، وتسهم في القوى الأساسية وهي الجاذبية والكهرومغناطيسية والقوة النووية الضعيفة.[11] كما هو في المادة فإن الإلكترون لديه خصائص ازدواجية موجة-جسيم في ميكانيكا الكم، لذا فبإمكانه الاصطدام مع الجسيمات الأخرى فينحرف مثل الضوء. لكن وبسبب صغر كتلة الإلكترون فإن تلك الازدواجية تتجلى بشكل أفضل في التجارب المخبرية. وبما أنها تندرج تحت عائلة الفرميون، وبحسب مبدأ استبعاد باولي فلا يمكن لإلكترونين أن يأخذا نفس حالة الكم.[10]

إلكترون

تجربة على أنبوب كروكس وهي أول من أظهر طبيعة الجسيم إلكترون. ويبدو بالصورة الشكل الجانبي لهدف مصوب باتجاه واجهة الأنبوب وبواسطة حزمة إلكترونات.[1]

التكوين جسيم أولي[2]
العائلة فرميون
المجموعة ليبتون
الجيل الأول
التفاعل الجاذبية، الكهرومغناطيسية، قوة نووية ضعيفة
جسيم مضاد بوزيترون (وأحيانا يطلق عليه نقيض الكترون)
واضع النظرية ريتشارد لامنج (1838–51),[3]
جورج ستوني (1874) وآخرون.[4][5]
المكتشف جوزيف تومسون (1897)[6]
الرمز
e
و
β
الكتلة 9.10938291(40)×10^−31 كغم[7]

5.4857990946(22)×10−4 u[7]
[1822.8884845(14)]−1 u[معلومة 1]

0.510998928(11) MeV/c2[7]
الشحنة الكهربائية −1 e[معلومة 2] -1.602176565(35)×10^−19 C[7]
−4.80320451(10)×10−10 [[esu]]
العزم المغناطيسي −1.00115965218076(27) μB[7]
الدوران 12

تم وضع نظرية مفهوم مقدار الشحنة الإلكترونية غير القابلة للتجزئة لشرح الخصائص الكيميائية للذرات، فكانت بدايتها سنة 1838 مع عالم الطبيعة البريطاني ريتشارد لامنج[4]؛ ثم قدم الفيزيائي الإيرلندي جورج ستوني اسم الكترون وذلك سنة 1894. في سنة 1897 عرّف البريطاني جوزيف طومسون وفريقه الفيزيائيين الإلكترون بأنه جسيم.[6][12]

العديد من الظواهر الفيزيائية، مثل الكهرباء والمغناطيسية والتوصيل الحراري فإن الإلكترونات لها دورًا أساسيًا في ذلك. فالإلكترون في حركته بالنسبة للمراقب يولد المجال المغناطيسي، وكذلك فإن المجالات المغناطيسية الخارجية تجعلها تنحرف. فعندما يتحرك الإلكترون فإنه يمتص أو ينتج طاقة على شكل فوتونات. تحيط الإلكترونات بالنواة المتكونة من بروتونات ونيوترونات، فيكونون جميعًا الذرة، وإن كان الإلكترون يسهم في أقل من 0.06% من الكتلة الكلية للذرة. يسبب جاذبية قوة كولومب بين الإلكترون والبروتون بأن يجعل الإلكترونات مرتبطة بالذرات. فالتبادل أو تقاسم الإلكترونات في ما بين الذرات هو السبب الرئيسي للروابط الكيميائية.[13]

فحسب النظريات فإن معظم الإلكترونات قد تكونت في لحظة الانفجار العظيم، ولكن يمكن أيضًا إنتاجها خلال البلى بيتائي للنظائر المشعة والاصطدامات عالية الطاقة، وفي لحظة دخول الأشعة الكونية للغلاف الجوي. وخلال إفناءه مع البوزيترون فقد يتعرض الإلكترون للدمار، وقد يتعرض للامتصاص خلال تفاعلات الانصهار النجمية. ويمكن لأدوات المختبرات احتواء ومراقبة الإلكترونات الفردية وكذلك في بلازما الإلكترونات، حيث كرس لها المقراب للكشف عن بلازما الإلكترونات في الفضاء الخارجي. وتوجد العديد من تطبيقات الإلكترون كما هو في اللحام وأنبوب الأشعة المهبطية ومعجلات الجسيمات ومجهر إلكتروني وعلاج إشعاعي والليزر الإلكتروني.

التاريخ

لاحظ الإغريق القدماء بأن الكهرمان يجذب الأشياء البسيطة في حالة فركه بالقماش فإن استثنينا البرق، فإن تلك الظاهرة تعد من أقدم تجارب البشرية مع الكهرباء على مر التاريخ.[14]

أشار الفيزيائي الإنجليزي وليام جيلبرت في مقال له اسمه دي ماجنتا اللاتينية سنة 1600 إلى مصطلح جديد أصاغه من اللغة اللاتينية الجديدة وأسماه إلكتريكوس electricus للإشارة إلى خاصية جذب الأشياء الصغيرة بعد فركها.[15] فتلك الكلمة مأخوذة من الكلمة الإغريقية ήλεκτρον (الإغريقية اللاتينية) الكترون في عام 1894 م للإشارة إلى الكهرمان.

في سنة 1737 اكتشف العالمين شارل دو فاي وهاكسبي كلا على حدة وجود نمطين من الشحنات الكهربائية السكونية؛ إحداهما ينتج من الاحتكاك مع الزجاج، والآخر من الاحتكاك مع الراتنج. ومن هذه استنتج دوفاي نظريته بأن الكهرباء تحتوي على سائلين كهربائيين، وأسماهما بالزجاجي والراتنجي، ولاحظ الفرق بين الموصلات والمواد العازلة، ويمكن فصلهما عن طريق الاحتكاك مما يسبب بتحييد بعضها البعض عند اتحادهما.[16] بعد ذلك بحوالي عقد من الزمان اقترح بنجامين فرانكلين بأن الكهرباء هي ليست من عدة أنواع من السوائل الكهربائية، ولكنه نفس السائل الكهربائي ولكن تحت ضغوط مختلفة. وقدم لهم الشحنة الحديثة بتسمية إيجابي وسلبي على التوالي.[17][18]

بين سنتي 1838 و 1851 طور عالم الطبيعيات البريطاني ريتشارد لامنج فكرة أن الذرة تتكون من نواة مادة محاطة بجزيئات دون ذرية والتي تكوّن وحدة الشحنات الكهربائية.[3] وبداية من سنة 1846 أعطى الفيزيائي الألماني فيبر نظريته القائلة بأن الكهرباء تتألف من سائلين ذو شحنتين موجبة وسالبة، وتفاعلهما يحكمه قانون التربيع العكسي. في سنة 1874 اقترح الفيزيائي الإيرلندي جورج ستوني بعد دراسة هذه ظاهرة التحليل الكهربائي بأن هناك "كمية محددة واحدة من الكهرباء"، وهي شحنة من أيون أحادي التكافؤ. وكان قادرًا على تقييم قيمة هذه الشحنة الأولية e عن طريق قوانين فرداي للتحليل الكهربائي.[19] واعتقد ستوني بأن تلك الشحنات مرتبطة بصورة دائمة بالذرات ولا يمكن إزالتها. في سنة 1881 جادل الفيزيائي الألماني هلمهولتز أن كلا من الشحنة الموجبة والسالبة منقسمتين إلى جزئين أوليين، كل منها "يتصرف كذرات كهربائية".[4] ثم أنشأ ستوني مصطلح الكترون لوصف تلك الشحنات الأولية وكان ذلك سنة 1894، وقد قال فيها: "تم تقدير الكمية الفعلية لتلك الوحدة الأساسية الأكثر أهمية في الكهرباء، وقد غامرت عندما أشرت إلى اسم الكترون".[20] وكلمة الكترون (بالإنجليزية: electron)‏ هي مركبة مستنبطة من كلمة الكتريك electric ولاحقتها ون -on، والتي استخدمت بعد ذلك للإشارة إلى الجسيمات دون الذرية مثل البروتون والنيوترون.[21][22]

الاكتشاف

انعكاس شعاع من الإلكترونات على شكل دائرة بواسطة المجال المغناطيسي[23]

قام الفيزيائي الألماني يوهان فيلهلم هتورف بدراسة التوصيل الكهربائي على الغازات المتخلخلة. فاكتشف سنة 1869 وهج منبعث من مهبط يزداد بالحجم عند تقليل ضغط الغاز. وفي سنة 1876 أظهر الفيزيائي الألماني يوجين غولدشتاين أن أشعة هذا الوهج له ظل، فأطلق عليه اسم لهم أشعة الكاثود.[24] وفي السبعينات من نفس القرن طور الكيميائي والفيزيائي الإنجليزي السير وليام كروكس أول أنبوب أشعة الكاثود مفرغة بالداخل.[25] ثم أظهر بعد ذلك بأن أشعة التلألؤ التي تظهر داخل أنبوب تحمل طاقة وتنتقل من القطب السالب إلى القطب الموجب. بالإضافة إلى أنه كان قادرًا على تحريك الأشعة عند تطبيق مجال مغناطيسي عليها، مما يدل على أن الشعاع تصرف كما لو كان سالب الشحنة.[26][27] فاقترح سنة 1879 أنه بالإمكان تفسير تلك الخصائص من خلال ما أسماه مادة مشعة. وألمح إلى أن قد تكون هذه الحالة الرابعة للمادة التي تتكون من جزيئات سالبة الشحنة تنطلق بسرعة عالية من الكاثود.[28]

وسع الفيزيائي البريطاني -ألماني المولد- آرثر شوستر من تجارب كروكس وذلك بوضع صفيحة معدنية متوازية مع أشعة الكاثود وطبق الكمون الكهربائي بين الصفيحتين. فصرف المجال تلك الأشعة باتجاه الصفيحة موجبة الشحنة، مما أعطى أدلة جديدة على أن تلك الأشعة تحمل شحنة سالبة. وتمكن شوستر في سنة 1890 من تقدير نسبة الشحنة للكتلة لمكونات الأشعة عن طريق قياس مقدار انحراف عن المستوى المحدد للتيار. لكن إنتاج تلك القيمة التي كانت أكثر من ألف مرة من المتوقع، هو إعطاء بعض المصداقية لتلك الحسابات في ذاك الوقت.[26][29]

في عام 1896 أجرى الفيزيائي البريطاني جوزيف طومسون مع مساعديه تاونسند وويلسون[6] تجارب أشارت إلى أن أشعاعات الكاثود هي جسيمات فريدة من نوعها بدلا من أن تكون موجات أو ذرات أو حتى جزيئات كما كان الاعتقاد سابقًا.[30] وقد أعطى طومسون قيمة جيدة لكل من الشحنة e والكتلة m، موجدا جسيمات لأشعة الكاثود وأسماها "الكريات" (بالإنجليزية: corpuscles)‏، ولها كتلة قد تكون واحد من الألف من كتلة أقل الأيونات المعروفة: الهيدروجين.[12][30] وأظهر أن نسبة الشحنة للكتلة e/m مستقلة عن مادة الكاثود. وأظهر أيضًا أن إنتاج جسيمات سالبة الشحنة من مواد مشعة بواسطة التسخين ومن مواد مضيئة هو شيء كوني.[30] وقد أعاد الفيزيائي الأيرلندي جورج فيتزجيرالد الاقتراح بتسمية تلك الجسيمات باسم إلكترون، وقد لقي هذا الاسم قبولا علميًا دوليًا منذ ذلك الوقت.[26]

اكتشف الفيزيائي الفرنسي هنري بيكريل أثناء دراسة الومضان الطبيعي للمعادن سنة 1896 أنها تصدر إشعاع دون التعرض لمصدر طاقة خارجي. فأصبحت تلك المواد المشعة موضع اهتمام كبير للعلماء خصوصًا الفيزيائي النيوزلندي إرنست رذرفورد الذي اكتشف أنها تصدر جسيمات. وأطلق عليها جسيمات ألفا وبيتا على أساس قدرتها على اختراق المادة.[31] وفي سنة 1900 أظهر بيكريل أن بإمكان أشعة بيتا المنبعثة من الراديوم أن تنحرف في وجود مجال كهربائي وأن نسبة الكتلة للشحنة هي نفسها كما في أشعة الكاثود.[32] فعزز هذا الدليل الرأي القائل بأن الالكترونات توجد كعناصر في الذرات.[33][34]

قام الفيزيائي الأمريكي روبرت ميليكان بعناية ودقة أكثر في قياس شحنة الإلكترون في تجربة قطرة الزيت سنة 1909 ثم نشر النتائج سنة 1911. واستخدمت تلك التجربة المجال الكهربائي لمنع قطرات الزيت المشحونة من السقوط بسبب الجاذبية. وأمكن لهذا الجهاز قياس الشحنة الكهربائية حتى 1-150 أيون مع هامش خطأ اقل من 0.3٪. وقد أجرى فريق طومسون تجارب مماثلة قبل ذلك[30]، باستخدام سحب من قطرات الماء المشحونة أنتجها التحليل الكهربائي.[6] وقد حصل أبرام يوفي منفصلا على نفس نتائج ميليكان وذلك باستخدام جسيمات مجهرية من المعادن، وكان ذلك سنة 1911 ولكن نشر النتائج سنة 1913.[35] مع ذلك فإن قطرات الزيت أكثر ثباتًا من قطرات الماء بسبب ضعف معدل التبخير لديه، وبالتالي فالتجارب الدقيقة بدأت أكثر ملاءمة خلال فترات زمنية أطول.[36]

وجد عند بداية القرن العشرين وفي ظروف معينة جسيمات مشحونة سريعة الحركة تسبب بتكثيف بخار ماء مفرط بالتشبع خلال مساره. ففي سنة 1911 استخدم تشارلز ويلسون هذا المبدأ لاستنباط غرفة غيوم مما سمح بتصوير مسارات الجسيمات المشحونة مثل الإلكترونات سريعة الحركة.[37]

النظرية الذرية

نموذج بور للذرة والتي يبين حالات من الكترون ذات طاقة كم محددة بالرقم n. فعندما ينتقل الإلكترون إلى مدار أدنى فإنه ينبعث منه طاقة فوتون تساوي الفرق بين طاقة المدارين.

شكلت التجارب التي قام بها كلا من أرنست رذرفورد وهنري موزلي وجيمس فرانك وغوستاف هرتس بداية من سنة 1914 الصورة في تكوين الذرة كنواة كثيفة ذات شحنة موجبة تحيط بها إلكترونات أقل كتلة.[38] ثم أتى الفيزيائي الدانماركي نيلز بور فافترض في سنة 1913 بأن الالكترونات تكمن في حالات طاقة كمية، ويحدد العزم الزاوي لمدار الإلكترون حول النواة تلك الطاقة. وبإمكان تلك الإلكترونات التنقل بين تلك الحالات أو المدارات عن طريق إطلاق أو امتصاص فوتونات ذات ترددات محددة. ومن خلال تلك المدارات محددة الكم أوضح نيبور بدقة خطوط الطيف لذرة الهيدروجين.[39] ومع ذلك فنموذج بور لم يتمكن من تفسير الفروق في الكثافة النسبية لخطوط الطيف، وكذلك أطياف العناصر الأثقل من الهيدروجين، فهي بالكاد اقتصرت على تفسير ذرة الهيدروجين.[38]

وقد شرح جيلبرت نيوتن لويس الروابط الكيميائية بين الذرات وذلك في سنة 1916 عندما اقترح بأن مساهمة زوج أو أكثر من الإلكترونات بين الذرات للمحافظة على الرابطة التساهمية في ما بين تلك الذرات، مما ينتج عنه تجاذب جانبي يعمل على تماسك الجزيء الناتج.[40] وبعدها أي في سنة 1923 أعطى كلا من والتر هيتلر وفريتز لندن شرحًا وافيًا حول تشكيل زوج الإلكترون مع الروابط الكيميائية في مجال ميكانيكا الكم.[41] وفي سنة 1919 فصّل الكيميائي الأمريكي إرفينغ لانغموير نموذج لويس للذرة مشيرًا بأن جميع الإلكترونات موزعة على التوالي مكونة قشرة كروية متحدة المركز وذات سماكة متساوية.[42] وتنقسم تلك القشور بدورها إلى عدة خلايا، وكل خلية تحتوي على زوج من الإلكترونات. وعلى نحو ما فإن لنموذج لانغموير القدرة على شرح الخصائص الكيميائية لجميع العناصر في الجدول الدوري[41]، التي كانت معروفة بتكرار نفسها وفقًا للقانون الدوري.[43]

لاحظ الفيزيائي النمساوي فولفغانغ باولي في سنة 1924 بأنه يمكن تفسير البناء شبيه القشرة للذرة من خلال مجموعة من أربع معاملات متغيرة تحدد كل حالة طاقة الكم، شريطة أن يكون أن لا يزيد في كل حالة عن إلكترون واحد. (ويعرف هذا الحظر المفروض على أكثر من إلكترون أن يشغل نفس حالة كمية الطاقة باسم مبدأ استبعاد باولي.[44]) وقدم الفيزيائيان الهولنديان صمويل جودسميت وجورج أولنبيك الآلية المادية لشرح المعامل الرابع والذي له قيمتين مميزتين، عندما اقترحوا أن بإمكان الإلكترون مع الزخم الزاوي لمداره أن يمتلك قوة زخم زاوي فعلي.[38][45] وعرفت تلك الخاصية باللف المغزلي وقد شرحت تقسيم سابق كان غامضًا عن خطوط الطيف رصدها مرسمة طيف عالي الدقة، وعرفت تلك الظاهرة باسم تقسيم هيكلي دقيق.[46]

ميكانيكا الكم

في عام 1924 كتب الفيزيائي الفرنسي لويس دي بروي رسالة دكتوراه بعنوان "بحث حول نظرية الكم" Recherches sur la théorie des quanta، وافترض فيها أن كل الموادّ تمتلك "موجة دي بروي" مشابهة للضوء.[47] حيث أنه وتحت ظروف مناسبة ستُظهر الإلكترونات والمواد الأخرى خصائص كل من الجسيمات والضوء. ويُستدل على الخصائص الجسيميّة لجسيم ما عندما يُظهر أنه يملك موقعًا متمركزاً في المكان يعتمد على انحناء مساره أثناء حركته.[48] أما الطبيعة الشبه الموجية للجسيم فيُمكن أن تلاحظ - على سبيل المثال - عندما يمر شعاع من الضوء عبر شقوق متوازية ويخلق نمطاً متداخلاً من الأشعة. في عام 1927 بُرهن على تأثير التداخل بتجربتين مختلفتين استعين فيهما بشعاع من الإلكترونات، الأولى قام بها الفيزيائي الإنكليزي جورج باغت طومسون باستخدام رقاقة حديدية نحيلة مع الشعاع، والثانية قام بها الفيزيائيان الأمريكيان كلنتون دافيسون ولستر جيرمر باستخدام بلورة من النيكل معه.[49]

في ميكانيكا الكم يوصف المدار الذري سلوك الإلكترون في الذرة، وهو توزيع الاحتمالات بدلا من المدار. ويشير النطاق المظلل في الرسم إلى الاحتمال النسبي "للعثور" على الإلكترون ذو طاقة معطاة حسب الرقم الكمي عند تلك النقطة.

أدى نجاح فرضية دي بروي بإرفين شرودنغر أن يصدر كتابه سنة 1926 والذي نجح أيضًا في وصف كيفية انتشار موجات الإلكترونات خلال معادلته المسماة معادلة شرودنغر.[50] وبدلا من الرضوخ إلى حل يحدد موقع الإلكترون مع مرور الوقت، فإنه بالإمكان استخدام تلك المعادلة الموجية للافتراض باحتمالية العثور على إلكترون قريب من الموقع. سمي هذا التقريب لاحقًا باسم ميكانيكا الكم، التي اعطت اشتقاق قريب جدًا لحالات طاقة الإلكترون في ذرة الهيدروجين.[51] فعندما يؤخذ بعين الاعتبار لف وتفاعل الإلكترونات المتعددة، فإن ميكانيكا الكم يمكنها بسهولة افتراض بترتيب إلكترونات الذرات ذات رقم ذري أعلى من الهيدروجين.[52]

في سنة 1928 وبناء على مبدأ ولفغانغ باولي فقد أنتج بول ديراك نموذجا للإلكترون وهي معادلة ديراك وتتفق مع مبدأ النسبية وذلك بتطبيق الاعتبارات النسبية والتماثل في صياغة هاملتونية لميكانيكا الكم في المجال الكهرومغناطيسي.[53] ولكي يحل بعض المشاكل داخل معادلته النسبية فقد طور ديراك نموذجًا للفراغ وذلك سنة 1930 ووصفه بأنه بحر من الجسيمات ذات طاقة سلبية لانهاية لها، وقد اطلق عليها اسم بحر ديراك. وكان هذا أدى به ذلك إلى الافتراض بوجود جسيمات البوزيترون، وهي المادة المضادة النظيرة للإلكترون.[54] تلك الجسيمات قد اكتشفها كارل أندرسون سنة 1932، الذي اقترح بتسميتها الإلكترونات القياسية أو نيجاترون negatrons، حيث أنها مزيج من كلمتي الكترون electron وسلبي negative. ولا يزال مصطلح نيجاترون يستخدم من حين لآخر، ويمكن اختصارها إلى نيجاتون 'negaton'.[55][56]

وفي سنة 1947 وجد ويليس لامب وبمساعدة أحد طلبته اسمه روبرت روثرفورد أن هناك فارق في حالات الكم لذرة الهيدروجين والتي من المفترض أن يكون لها نفس الطاقة والتي تغيرت حسب الرابطة التي بينهم، وسمي هذا الفرق بانزياح لامب. وفي نفس الفترة تلك اكتشف كوش مع هنري فولي أن العزم المغناطيسي للإلكترون أعلى بقليل مما تنبأت به نظرية ديراك. وسمي هذا الفارق البسيط لاحقا باسم العزم المغناطيسي الشاذ للإلكترون. ولحل تلك الإشكالات طور كلا من سين توموناجا وريتشارد فاينمان وجوليان شفينجر في أواخر الأربعينيات تلك النظرية المنقحة والمسماة كهروديناميكا الكم.[57]

معجلات الجسيمات

مع تطور معجل الجسيمات خلال النصف الأول من القرن العشرين، بدأ الفيزيائيون في الخوض وبعمق في خصائص الجسيمات دون الذرية.[58] وأول محاولة ناجحة لتسريع الالكترونات باستخدام الحث الكهرومغناطيسي كانت عن طريق جهاز بيتاترون الذي أنشأه دونالد كيرست سنة 1942. ووصلت طاقته الأولية حوالي MeV2.3 في حين وصلت طاقة البيتاترون التالية إلى 300 MeV. ثم اكتشف الإشعاع السنكروتروني سنة 1947 بطاقة 70 MeV في شركة جنرال إلكتريك. وكانت عملية تسريع الإلكترونات والتي قاربت سرعتها من سرعة الضوء خلال مجال مغناطيسي هي السبب في ظهور هذا الإشعاع.[59]

وفي سنة 1968 بدأ العمل بأدون وهو أول مصادم جسيمات ذو شعاع طاقة عالي تساوي  GeV1.5.[60] وهو أداة لتسريع الإلكترونات والبوزيترونات باتجاهين متضادين، وذلك لمضاعفة الطاقة الفعالة من اصطدامهما عند مقارنة ضرب إلكترون بهدف ثابت.[61] وخلال الفترة من 1989-2000 أعطى مصادم الكترون-بوزيترون الكبير (LEP) في سرن طاقة شعاع 209 الكترون فولت وصنع قياسات مهمة للنموذج القياسي لفيزياء الجسيمات.[62][63]

التشكيل

إنتاج زوجي ناتج من اصطدام الفوتون مع نواة ذرة

تعتبر نظرية الانفجار العظيم أكثر نظرية قبولا في النطاق العلمي لشرح المراحل المبكرة من تطور الكون.[130] وكانت درجات الحرارة في أول مللي ثانية من الانفجار الكبير قد وصلت أكثر من 10 مليار  كلفن وطاقة الفوتونات أكثر من مليون إلكترون فولت. وكانت لتلك الفوتونات نشاطا يكفي بأن تتفاعل مع بعضها البعض لتشكيل أزواج الإلكترونات والبوزيترونات. وبالمقابل تفني تلك الأزواج بعضها البعض لتنفث الفوتونات النشطة:


γ
+
γ

e+
+
e

وقد تمت المحافظة على التوازن بين الإلكترونات والبوزيترونات والفوتونات خلال تلك المرحلة من تطور الكون. ولكن بعد مرور 15 ثانية انخفضت درجة حرارة الكون إلى مادون الحاجز الذي يمكِّن من تشكيل إلكترون-بوزيترون. وقد أفنى معظم ما تبقى من الإلكترونات والبوزيترونات بعضها البعض مطلقة أشعة غاما التي سخنت الكون لفترة وجيزة.[131]

ولأسباب لا تزال غير مؤكدة خلال عملية تكوين لبتو كان هناك فائض في عدد الإلكترونات على البوزيترونات.[132] وبذلك نجا حول إلكترون من كل مليار في عملية الإفناء. وقابل هذا الفائض زيادة في عدد البروتونات على ضديد-البروتونات في حالة تعرف باسم تباين باريون، مما أدي إلى شحنة صفرية صافية للكون.[133][134] ثم بدأ ما تبقى من البروتونات والنيوترونات بالتفاعل مع بعضها البعض في عملية تسمى تخليق نووي ومكونة نظائر الهيدروجين والهيليوم مع كميات ضئيلة من الليثيوم. بلغت ذروة تلك العملية بعد خمس دقائق.[135] وخضع ماتبقى من النيوترونات إلى إضمحلال بيتا السلبي بنصف عمر يعادل ألف ثانية تقريبا، ونتج عن تلك العملية إطلاق البروتونات والإلكترونات


ν
e
+
e
+
p

n

وفي السنوات 300000400000 التالية بقيت الإلكترونات الزائدة حيوية جدا لترتبط مع أنوية الذرات.[136] ثم تلاها فترة سميت إعادة دمج عندما تشكلت الذرات المحايدة وأصبح الكون المتمدد أكثر شفافية للإشعاع[137]

تشكل أول جيل للنجوم بعد الانفجار الكبير بحوالي مليون سنة.[137] فأنتج التخليق النووي البوزيترونات من اندماج أنوية الذرات داخل النجوم. ثم مباشرة تتلاشى تلك الجسيمات المضادة باصطدامها مع الإلكترونات مطلقة أشعة غاما، فتكون النتيجة الصافية هي انخفاض ثابت في عدد من الإلكترونات ويماثله زيادة في عدد النيوترونات. ومع ذلك فإن عملية تطور النجوم هو نتيجة لتوليفة من نظائر مشعة. بحيث يمكن لعدد من لنظائر مشعة أن تخضع لإضمحلال بيتا سلبي فينبعث من النواة إلكترون وضديد نيترينو.[138] ومثال على ذلك النظير كوبالت-60 (60Co) والذي يتحلل ليكون نيكل-60 (60Ni)[139]

مطر جوي ممتد انشأته أشعة كونية نشطة ضربت غلاف الجوي للأرض.

عندما يصل النجم إلى نهاية عمره الافتراضي، أي أن حجمه يزيد عن 20 كتلة شمسية فمن المحتمل ولوجه طور انهيار الجاذبية ليشكل ثقب أسود.[140] طبقا للفيزياء الكلاسيكية فتلك الأجسام النجمية الضخمة تمارس جذب تثاقلي التي من القوة أن تمنع أي شيء حتى الإشعاع الكهرومغناطيسي من الإفلات عبر نصف قطر شفارتزشيلد. ومع ذلك يعتقد أن تأثير ميكانيكية الكم قد يسمح بانبعاث إشعاع هوكينغ في تلك المسافة. ويحتمل أن تنشأ الالكترونات (والبوزيترونات) في أفق الحدث لبقايا النجوم تلك.

عند نشأة أزواج من الجسيمات الافتراضية (مثل الإلكترون والبوزيترون) بالقرب من أفق الحدث، فإن التوزيع المكاني العشوائي لتلك الجسيمات قد يسمح لأحدهما بالظهور على السطح الخارجي؛ وتسمى عملية نفق ميكانيكا الكم. لذا فقد يوفر جهد الجاذبية للثقب الأسود الطاقة اللازمة لتحويل هذا الجسيم الافتراضي إلى جسيم حقيقي، مما يمكنها من أن تشع في الفضاء البعيد.[141] وفي المقابل فإن نصيب العضو الآخر لهذا الزوج هي الطاقة السلبية، مما يسبب بخسارة صافية لكتلة-طاقة الثقب الأسود. فيزداد معدل إشعاع هوكينغ مع تناقص الكتلة مسببا بتبخر الثقب الأسود ثم ينفجر في نهاية المطاف.[142]

الأشعة الكونية هي جسيمات لديها طاقة عالية ترتحل عبر الفضاء. وقد سجلت أعلى حالات من تلك الطاقة عند 3.0×1020 eV.[143] فعندما تصطدم تلك الجسيمات بالنويات في الغلاف الجوي للأرض، ينتج وابل من الجسيمات ومنها البيون.[144] وقد لوحظ أن أكثر من نصف الإشعاع الكوني على سطح الأرض يتكون من الميونات. فالجسيم المسمى ميون هو لبتون أي انه يخلق في الغلاف الجوي العلوي نتيجة اضمحلال بيون.


π

μ
+
ν
μ

والميون بدوره يضمحل ليشكل الكترونا أو بوزيترون[145]


μ

e
+
ν
μ
+
ν
e

المراقبة

تتسبب الإلكترونات النشطة المنتشرة في الغلاف الجوي بظهور الشفق.[146]

لعمل نظام مراقبة الإلكترونات عن بعد يجب الكشف عن طاقاتها المشعة. مثال على ذلك: في بيئة تحوي طاقة عالية مثل الهالة المحيطة بالنجم فإن الإلكترونات الحرة تشكل بلازما تشع طاقة بسبب أشعة الانكباح. وتخضع غازات الإلكترون لتذبذب البلازما، والتي تنشأ موجاتها من تغيرات متزامنة في كثافة الإلكترونات، مما ينتج عنها انبعاثات بالطاقة والتي يمكن الكشف عنها باستخدام تلسكوبات الراديو.[147]

يتناسب تردد الفوتون طرديا مع الطاقة. فتنقل الإلكترون المقيد بين مستويات الطاقة المختلفة للذرة يكون بامتصاص أو بعث فوتونات بترددات مميزة. على سبيل المثال: عندما تشع ذرات بسبب مصدر بطيف واسع، سوف تظهر خطوط امتصاص متميزة في طيف الإشعاع المرسل. وسيعرض كل عنصر أو جزيء مجموعة مميزة من خطوط الطيف، مثل خطوط طيف الهيدروجين. فقياسات علم الأطياف لقوة وعرض تلك الخطوط تتيح لها تحديد الخصائص البنيوية والمادية للمادة.[148][149]

بالإمكان ملاحظة تفاعلات الإلكترونات الفردية في ظروف المختبرات عن طريق أجهزة كشف الجسيمات، والتي تسمح بقياس خصائص معينة كالطاقة واللف والشحنة.[107] فقد صار بالإمكان بعد تطوير فخ بول ومصيدة بنينغ من ابقاء الجسيمات المشحونة ضمن منطقة صغيرة لفترات طويلة، مما يتيح أخذ قياسات دقيقة لخواص تلك الجسيمات. مثال على ذلك؛ تمكنت مصيدة بيننغ في حالة واحدة فقط من احتواء إلكترون مفرد لمدة 10 أشهر.[150] وتم حساب العزم المغناطيسي للإلكترون بدقة تصل إلى أحد عشر رقم، وهو أمر اعتبر بأنه أكثر دقة من أي ثابت فيزيائي آخر تم الحصول عليه حتى سنة 1980.[151]

تمكن فريق من جامعة لوند السويدية في فبراير 2008 من الحصول على أول تصوير فيديو في كيفية توزيع طاقة الإلكترون، حيث استطاع العلماء الباحثون من استخدام ومضات ضوئية شديدة القصر وهي ومضات أوتوثانية مما مكن من ملاحظة حركة الإلكترون لأول مرة.[152][153]

يمكن تصور توزيع الإلكترونات في المواد الصلبة عن طريق مطياف الحل الزاوي للانبعاث الضوئي [الإنجليزية] (ARPES). وهي تقنية تستخدم التأثير الكهروضوئي لقياس الفضاء المتبادل [الإنجليزية]—وهو تمثيل رياضياتي للهياكل الدورية تستخدم للاستدلال على الهيكل الأصلي. ويمكن استخدام ARPES لتحديد اتجاه وسرعة وتناثر الإلكترونات داخل المواد.[154]

انظر أيضًا

معلومة

  1. القاسم المشترك للتحويل الكسري هو معكوس القيمة العشرية (جنبا إلى جنب مع المعيار النسبي غير المؤكد ل 4.2×10−10).
  2. شحنة الإلكترون هي شحنة أولية سالبة، بينما عند البروتون فالشحنة هي موجبة.
  3. يتم الحصول على هذا من رقم اللف الكمي خلال
    رقم الكم s = 12.
    أنظر: = Gupta، = M.C. (2001). Atomic and Molecular Spectroscopy. New Age Publishers. صفحة 81. ISBN 8122413005. نسخة محفوظة 2020-06-01 على موقع واي باك مشين.
  4. مغنطون بور:
  5. يشتق نصف قطر الإلكترون التقليدي على النحو التالي. لنفترض أن شحنة الإلكترون تنتشر بانتظام خلال مجال كروي. حيث بإمكان الجزء الواحد من المجال أن يصد الأجزاء الأخرى لذا فالمجال يتكون من طاقة كهروستاتيكية كامنة. بافتراض أن تلك الطاقة تعادل الطاقة الساكنة الإلكترون والتي يحددها النسبية الخاصة(E = mc2).
    ومن النظرية الكهروستاتيكية فإن طاقة الوضع للمجال الكروي عند نصف القطر r وشحنة e تكون كالتالي:
    حيث ε0 هي سماحية الفراغ، وللإلكترون حيث الكتلة الساكنة m0، فإن الطاقة الساكنة تساوي:
    حيث c هي سرعة الضوء في الفراغ. ووضعها على مساوية وحل ل r بحيث تعطي نصف قطر الإلكترون التقليدي.
    انظر: = Haken، = H.؛ = Wolf، = H.C.؛ = Brewer، = W.D. (2005). The Physics of Atoms and Quanta: Introduction to Experiments and Theory. سبرنجر. صفحة 70. ISBN 3540672745. نسخة محفوظة 2020-06-01 على موقع واي باك مشين.
  6. ويطلق أحيانا على إشعاع الإلكترونات غير النسبية الإلكترونات إشعاع سيكلوتروني.
  7. يعتمد التغير في الطول الموجي Δλ على زاوية الارتداد θ كالتالي
    حيث c هي سرعة الضوء في الفراغ، وme هي كتلة الإلكترون. See Zombeck (2007: 393, 396).
  8. استقطاب الحزم الالكترونية يعني أن لف جميع الإلكترونات تنصب إلى اتجاه واحد. وبعبارة أخرى فإن اسقاطات لف جميع الإلكترونات على متجه زخمها لها نفس العلامة.

    هوامش

    مصادر

    1. Dahl، Per F. (1997). Flash of the Cathode Rays: A History of J J Thomson's Electron. CRC Press. صفحة 72. ISBN 0750304537.
    2. = Eichten، = E.J.؛ = Peskin، = M.E.؛ = Peskin، = M. (1983). "New Tests for Quark and Lepton Substructure". Physical Review Letters. = 50 (= 11): 811–814. doi:10.1103/PhysRevLett.50.811. نسخة محفوظة 10 مايو 2020 على موقع واي باك مشين.
    3. Farrar، Wilfred V. (1969). "Richard Laming and the Coal-Gas Industry, with His Views on the Structure of Matter". Annals of Science. 25: 243–254. doi:10.1080/00033796900200141. نسخة محفوظة 9 مايو 2020 على موقع واي باك مشين.
    4. Arabatzis، Theodore (2006). Representing Electrons: A Biographical Approach to Theoretical Entities. دار نشر جامعة شيكاغو. صفحات 70–74. ISBN 0226024210. نسخة محفوظة 22 سبتمبر 2014 على موقع واي باك مشين.
    5. Buchwald، J.Z.؛ Warwick، A. (2001). Histories of the Electron: The Birth of Microphysics. MIT Press. صفحات 195–203. ISBN 0-262-52424-4. نسخة محفوظة 2020-06-01 على موقع واي باك مشين.
    6. Dahl (1997:122–185).
    7. P.J. Mohr, B.N. Taylor, and D.B. Newell (2011), "The 2010 CODATA Recommended Values of the Fundamental Physical Constants" (Web Version 6.0). This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: https://physics.nist.gov/cuu/Constants/index.html [Thursday, 02-Jun-2011 21:00:12 EDT]. National Institute of Standards and Technology, Gaithersburg, MD 20899. "نسخة مؤرشفة". Archived from the original on 9 أكتوبر 2013. اطلع عليه بتاريخ 11 يناير 2012. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    8. "LDLP - Librairie Du Liban Publishers". اطلع عليه بتاريخ 19 مارس 2019. نسخة محفوظة 16 يوليو 2019 على موقع واي باك مشين.
    9. "CODATA value: proton-electron mass ratio". 2006 CODATA recommended values. National Institute of Standards and Technology. مؤرشف من الأصل في 28 مارس 2019. اطلع عليه بتاريخ 18 يوليو 2009. نسخة محفوظة 28 مارس 2019 على موقع واي باك مشين.
    10. = Curtis، = L.J. (2003). Atomic Structure and Lifetimes: A Conceptual Approach. مطبعة جامعة كامبريدج. صفحة 74. ISBN 0521536359. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    11. Anastopoulos، Charis (2008). Particle Or Wave: The Evolution of the Concept of Matter in Modern Physics. دار نشر جامعة برنستون. صفحات 236–237. ISBN 0691135126. نسخة محفوظة 28 سبتمبر 2014 على موقع واي باك مشين.
    12. Wilson، Robert (1997). Astronomy Through the Ages: The Story of the Human Attempt to Understand the Universe. CRC Press. صفحة 138. ISBN 0748407480. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    13. Pauling, L.C. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: an introduction to modern structural chemistry (الطبعة 3rd). Cornell University Press. صفحات 4–10. ISBN 0-8014-0333-2. مؤرشف من الأصل في 15 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    14. Shipley، Joseph T. (1945). Dictionary of Word Origins. The Philosophical Library. صفحة 133.
    15. Baigrie، Brian (2006). Electricity and Magnetism: A Historical Perspective. Greenwood Press. صفحات 7–8. ISBN 0-3133-3358-0. نسخة محفوظة 21 أغسطس 2014 على موقع واي باك مشين.
    16. /templatestyles>
    17. Benjamin Franklin (1706–1790). Science World, from Eric Weisstein's World of Scientific Biography. نسخة محفوظة 18 أكتوبر 2017 على موقع واي باك مشين.
    18. The Encyclopedia Americana; a library of universal knowledge. (1918). New York: Encyclopedia Americana Corp.
    19. جون دي بارو (1983). "Natural Units Before Planck". Royal Astronomical Society Quarterly Journal. 24: 24–26. Bibcode:1983QJRAS..24...24B. نسخة محفوظة 3 يونيو 2019 على موقع واي باك مشين.
    20. Stoney، George Johnstone (1894). "Of the "Electron," or Atom of Electricity". Philosophical Magazine. 38 (5): 418–420.
    21. Soukhanov, Anne H. ed. (1986). Word Mysteries & Histories. Houghton Mifflin Company. صفحة 73. ISBN 0-395-40265-4.
    22. Guralnik, David B. ed. (1970). Webster's New World Dictionary. Prentice-Hall. صفحة 450.
    23. Born, Max; Blin-Stoyle, Roger John; Radcliffe, J. M. (1989). Atomic Physics. Courier Dover. صفحة 26. ISBN 0486659844. نسخة محفوظة 29 سبتمبر 2014 على موقع واي باك مشين.
    24. Dahl (1997:55–58).
    25. DeKosky، Robert (1983). "William Crookes and the quest for absolute vacuum in the 1870s". Annals of Science. 40 (1): 1–18. doi:10.1080/00033798300200101. نسخة محفوظة 9 مايو 2020 على موقع واي باك مشين.
    26. Leicester، Henry M. (1971). The Historical Background of Chemistry. Courier Dover Publications. صفحات 221–222. ISBN 0486610535. نسخة محفوظة 15 مايو 2020 على موقع واي باك مشين.
    27. Dahl (1997:64–78).
    28. بيتر زيمن (1907). "Sir William Crookes, F.R.S.". نيتشر (مجلة). 77 (1984): 1–3. doi:10.1038/077001a0. نسخة محفوظة 21 أغسطس 2014 على موقع واي باك مشين.
    29. Dahl (1997:99).
    30. Thomson، J. J. (1906). "Nobel Lecture: Carriers of Negative Electricity"(PDF). مؤسسة نوبل. مؤرشف من الأصل (PDF) في 05 مايو 2017. اطلع عليه بتاريخ 25 أغسطس 2008. "نسخة مؤرشفة" (PDF). Archived from the original on 5 مايو 2017. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    31. Trenn، Thaddeus J. (1976). "Rutherford on the Alpha-Beta-Gamma Classification of Radioactive Rays". Isis. 67 (1): 61–75. doi:10.1086/351545. جايستور 231134. نسخة محفوظة 4 أبريل 2019 على موقع واي باك مشين.
    32. Becquerel، Henri (1900). "Déviation du Rayonnement du Radium dans un Champ Électrique". Comptes Rendus de l'Académie des Sciences. 130: 809–815. (بالفرنسية)
    33. Buchwald and Warwick (2001:90–91).
    34. Myers، William G. (1976). "Becquerel's Discovery of Radioactivity in 1896". Journal of Nuclear Medicine. 17 (7): 579–582. PMID 775027. نسخة محفوظة 22 ديسمبر 2008 على موقع واي باك مشين.
    35. Kikoin، Isaak K.؛ Sominskiĭ، Isaak S. (1961). "Abram Fedorovich Ioffe (on his eightieth birthday)". Soviet Physics Uspekhi. 3: 798–809. doi:10.1070/PU1961v003n05ABEH005812. Original publication in Russian: Кикоин، И.К.؛ Соминский، М.С. (1960). "Академик А.Ф. Иоффе" (PDF). Успехи Физических Наук. 72 (10): 303–321. نسخة محفوظة 9 أكتوبر 2018 على موقع واي باك مشين.
    36. Millikan، Robert A. (1911). "The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction of Stokes' Law". Physical Review. 32 (2): 349–397. doi:10.1103/PhysRevSeriesI.32.349. نسخة محفوظة 11 مايو 2020 على موقع واي باك مشين.
    37. Das Gupta، N. N.؛ Ghosh، Sanjay K. (1999). "A Report on the Wilson Cloud Chamber and Its Applications in Physics". Reviews of Modern Physics. 18: 225–290. doi:10.1103/RevModPhys.18.225. نسخة محفوظة 8 مايو 2020 على موقع واي باك مشين.
    38. Smirnov، Boris M. (2003). Physics of Atoms and Ions. سبرنجر. صفحات 14–21. ISBN 038795550X. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    39. Bohr، Niels (1922). "Nobel Lecture: The Structure of the Atom"(PDF). مؤسسة نوبل. مؤرشف من الأصل (PDF) في 09 أغسطس 2017. اطلع عليه بتاريخ 03 ديسمبر 2008. "نسخة مؤرشفة" (PDF). Archived from the original on 9 أغسطس 2017. اطلع عليه بتاريخ 23 مايو 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    40. Lewis، Gilbert N. (1916). "The Atom and the Molecule". Journal of the American Chemical Society. 38 (4): 762–786. doi:10.1021/ja02261a002. "نسخة مؤرشفة". Archived from the original on 21 أبريل 2020. اطلع عليه بتاريخ 11 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    41. Arabatzis، Theodore؛ Gavroglu، Kostas (1997). "The chemists' electron". European Journal of Physics. 18: 150–163. doi:10.1088/0143-0807/18/3/005. نسخة محفوظة 10 مايو 2020 على موقع واي باك مشين.
    42. Langmuir، Irving (1919). "The Arrangement of Electrons in Atoms and Molecules". Journal of the American Chemical Society. 41 (6): 868–934. doi:10.1021/ja02227a002. "نسخة مؤرشفة". Archived from the original on 9 مايو 2020. اطلع عليه بتاريخ 11 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    43. Scerri، Eric R. (2007). The Periodic Table. مطبعة جامعة أكسفورد. صفحات 205–226. ISBN 0195305736. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    44. Massimi، Michela (2005). Pauli's Exclusion Principle, The Origin and Validation of a Scientific Principle. مطبعة جامعة كامبريدج. صفحات 7–8. ISBN 0521839114. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    45. Uhlenbeck، G. E.؛ Goudsmith، S. (1925). "Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons". علوم الطبيعة. 13 (47). Bibcode:1925NW.....13..953E. (بالألمانية) نسخة محفوظة 3 يونيو 2019 على موقع واي باك مشين.
    46. Pauli، Wolfgang (1923). "Über die Gesetzmäßigkeiten des anomalen Zeemaneffektes". Zeitschrift für Physik. 16 (1): 155–164. Bibcode:1923ZPhy...16..155P. doi:10.1007/BF01327386. (بالألمانية) نسخة محفوظة 3 يونيو 2019 على موقع واي باك مشين.
    47. de Broglie، Louis (1929). "Nobel Lecture: The Wave Nature of the Electron"(PDF). مؤسسة نوبل. مؤرشف من الأصل (PDF) في 01 فبراير 2017. اطلع عليه بتاريخ 30 أغسطس 2008. "نسخة مؤرشفة" (PDF). Archived from the original on 1 فبراير 2017. اطلع عليه بتاريخ 23 مايو 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    48. Falkenburg، Brigitte (2007). Particle Metaphysics: A Critical Account of Subatomic Reality. سبرنجر. صفحة 85. ISBN 3540337318. نسخة محفوظة 15 مايو 2020 على موقع واي باك مشين.
    49. Davisson، Clinton (1937). "Nobel Lecture: The Discovery of Electron Waves"(PDF). مؤسسة نوبل. مؤرشف من الأصل (PDF) في 11 يونيو 2017. اطلع عليه بتاريخ 30 أغسطس 2008. "نسخة مؤرشفة" (PDF). Archived from the original on 11 يونيو 2017. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    50. Schrödinger، Erwin (1926). "Quantisierung als Eigenwertproblem". Annalen der Physik. 385 (13): 437–490. Bibcode:1926AnP...385..437S. doi:10.1002/andp.19263851302. (بالألمانية) نسخة محفوظة 3 يونيو 2019 على موقع واي باك مشين.
    51. Rigden، John S. (2003). Hydrogen. دار نشر جامعة هارفارد. صفحات 59–86. ISBN 0674012526. "نسخة مؤرشفة". Archived from the original on 7 مايو 2020. اطلع عليه بتاريخ 11 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    52. Reed، Bruce Cameron (2007). Quantum Mechanics. Jones & Bartlett Publishers. صفحات 275–350. ISBN 0763744514. "نسخة مؤرشفة". Archived from the original on 27 أبريل 2020. اطلع عليه بتاريخ 11 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    53. Dirac، Paul A. M. (1928). "The Quantum Theory of the Electron". وقائع الجمعية الملكية. 117 (778): 610–624. doi:10.1098/rspa.1928.0023. نسخة محفوظة 11 مايو 2020 على موقع واي باك مشين.
    54. Dirac، Paul A. M. (1933). "Nobel Lecture: Theory of Electrons and Positrons"(PDF). مؤسسة نوبل. مؤرشف من الأصل (PDF) في 09 أغسطس 2018. اطلع عليه بتاريخ 01 نوفمبر 2008. "نسخة مؤرشفة" (PDF). Archived from the original on 9 أغسطس 2018. اطلع عليه بتاريخ 23 مايو 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    55. Kragh، Helge (2002). Quantum Generations: A History of Physics in the Twentieth Century. دار نشر جامعة برنستون. صفحة 132. ISBN 0691095523. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    56. Gaynor، Frank (1950). Concise Encyclopedia of Atomic Energy. The Philosophical Library. صفحة 117.
    57. "The Nobel Prize in Physics 1965". مؤسسة نوبل. مؤرشف من الأصل في 10 أغسطس 2018. اطلع عليه بتاريخ 04 نوفمبر 2008. نسخة محفوظة 10 أغسطس 2018 على موقع واي باك مشين.
    58. Panofsky، Wolfgang K. H. (1997). "The Evolution of Particle Accelerators & Colliders" (PDF). جامعة ستانفورد. مؤرشف من الأصل (PDF) في 03 يونيو 2016. اطلع عليه بتاريخ 15 سبتمبر 2008. نسخة محفوظة 3 يونيو 2016 على موقع واي باك مشين.
    59. Elder، F. R.؛ Gurewitsch، A. M.؛ Langmuir، R. V.؛ Pollock، H. C. (1947). "Radiation from Electrons in a Synchrotron". Physical Review. 71 (11): 829–830. doi:10.1103/PhysRev.71.829.5. نسخة محفوظة 21 أبريل 2020 على موقع واي باك مشين.
    60. Hoddeson، Lillian؛ Brown، Laurie؛ Riordan، Michael؛ Dresden، Max (1997). The Rise of the Standard Model: Particle Physics in the 1960s and 1970s. مطبعة جامعة كامبريدج. صفحات 25–26. ISBN 0521578167. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    61. Bernardini، Carlo (2004). "AdA: The First Electron–Positron Collider". Physics in Perspective. 6 (2): 156–183. Bibcode:2004PhP.....6..156B. doi:10.1007/s00016-003-0202-y. نسخة محفوظة 3 يونيو 2019 على موقع واي باك مشين.
    62. "Testing the Standard Model: The LEP experiments". CERN. 2008. مؤرشف من الأصل في 13 فبراير 2013. اطلع عليه بتاريخ 15 سبتمبر 2008. نسخة محفوظة 13 فبراير 2013 على موقع واي باك مشين.
    63. "LEP reaps a final harvest". CERN Courier. 2000. اطلع عليه بتاريخ 01 نوفمبر 2008. نسخة محفوظة 30 سبتمبر 2017 على موقع واي باك مشين.
    64. Frampton، Paul H. (2000). "Quarks and Leptons Beyond the Third Generation". Physics Reports. 330: 263–348. doi:10.1016/S0370-1573(99)00095-2. نسخة محفوظة 8 مايو 2020 على موقع واي باك مشين.
    65. Raith، Wilhelm (2001). Constituents of Matter: Atoms, Molecules, Nuclei and Particles. CRC Press. صفحات 777–781. ISBN 0849312027.
    66. The original source for CODATA is = Mohr، = P.J.؛ = Taylor، = B.N.؛ = Newell، = D.B. (2006). "CODATA recommended values of the fundamental physical constants". Reviews of Modern Physics. = 80: = 633–730. doi:10.1103/RevModPhys.80.633.
      Individual physical constants from the CODATA are available at: "The NIST Reference on Constants, Units and Uncertainty". المعهد الوطني للمعايير والتقنية. مؤرشف من الأصل في 14 أكتوبر 2013. اطلع عليه بتاريخ 15 يناير 2009. نسخة محفوظة 14 أكتوبر 2013 على موقع واي باك مشين.
    67. Zombeck، Martin V. (2007). Handbook of Space Astronomy and Astrophysics (الطبعة 3rd). Cambridge University Press. صفحة 14. ISBN 0521782422. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    68. Murphy، Michael T.؛ Flambaum، VV؛ Muller، S؛ Henkel، C (2008-06-20). "Strong Limit on a Variable Proton-to-Electron Mass Ratio from Molecules in the Distant Universe". Science. 320 (5883): 1611–1613. PMID 18566280. doi:10.1126/science.1156352. اطلع عليه بتاريخ 03 سبتمبر 2008. "نسخة مؤرشفة". Archived from the original on 20 يونيو 2009. اطلع عليه بتاريخ 17 نوفمبر 2010. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    69. = Zorn، = J.C.؛ = Chamberlain، = G.E.؛ = Hughes، = V.W. (1963). "Experimental Limits for the Electron-Proton Charge Difference and for the Charge of the Neutron". فيزيكال ريفيو. = 129 (6): = 2566–2576. doi:10.1103/PhysRev.129.2566. نسخة محفوظة 8 مايو 2020 على موقع واي باك مشين.
    70. Gupta, M.C. (2001). Atomic and Molecular Spectroscopy. New Age Publishers. صفحة 81. ISBN 978-81-224-1300-7. مؤرشف من الأصل في 15 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    71. Odom، B.; et al. (2006). "New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron". Physical Review Letters. 97: 030801. Bibcode:2006PhRvL..97c0801O. PMID 16907490. doi:10.1103/PhysRevLett.97.030801. نسخة محفوظة 3 يونيو 2019 على موقع واي باك مشين.
    72. = Anastopoulos، = C. (2008). Particle Or Wave: The Evolution of the Concept of Matter in Modern Physics. دار نشر جامعة برنستون. صفحات 261–262. ISBN 0691135126. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    73. = Gabrielse، = G.; et al. (2006). "New Determination of the Fine Structure Constant from the Electron g Value and QED". Physical Review Letters. = 97: = 030802(1–4). doi:10.1103/PhysRevLett.97.030802. نسخة محفوظة 11 مايو 2020 على موقع واي باك مشين.
    74. = Dehmelt، = H. (1988). "A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius". Physica Scripta. = T22: = 102–110. doi:10.1088/0031-8949/1988/T22/016. نسخة محفوظة 11 مايو 2020 على موقع واي باك مشين.
    75. = Meschede، = D. (2004). Optics, light and lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics. Wiley-VCH. صفحة 168. ISBN 3527403647. نسخة محفوظة 15 مايو 2020 على موقع واي باك مشين.
    76. = Steinberg، = R.I.; et al. (1999). "Experimental test of charge conservation and the stability of the electron". فيزيكال ريفيو. = 61 (2): = 2582–2586. doi:10.1103/PhysRevD.12.2582. "نسخة مؤرشفة". Archived from the original on 10 مايو 2020. اطلع عليه بتاريخ 11 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    77. = Yao، = W.-M. (2006). "Review of Particle Physics". Journal of Physics G. = 33 (1): = 77–115. doi:10.1088/0954-3899/33/1/001. نسخة محفوظة 5 مايو 2020 على موقع واي باك مشين.
    78. = Munowitz، = M. (2005). Knowing, The Nature of Physical Law. مطبعة جامعة أكسفورد. صفحات 162–218. ISBN 0-19-516737-6. نسخة محفوظة 2020-06-01 على موقع واي باك مشين.
    79. Munowitz, M. (2005). Knowing the Nature of Physical Law. Oxford University Press. صفحة 162. ISBN 978-0-19-516737-5. مؤرشف من الأصل في 14 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    80. Kane، G. (October 9, 2006). "Are virtual particles really constantly popping in and out of existence? Or are they merely a mathematical bookkeeping device for quantum mechanics?". ساينتفك أمريكان. اطلع عليه بتاريخ 19 سبتمبر 2008. نسخة محفوظة 15 مايو 2020 على موقع واي باك مشين.
    81. Taylor، J. (1989). "Gauge Theories in Particle Physics". In Davies, Paul. The New Physics. مطبعة جامعة كامبريدج. صفحة 464. ISBN 0-521-43831-4. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    82. Genz، H. (2001). Nothingness: The Science of Empty Space. Da Capo Press. صفحات 241–243, 245–247. ISBN 0-7382-0610-5.
    83. Gribbin، J. (January 25, 1997). "More to electrons than meets the eye". مؤرشف من الأصل في 11 فبراير 2015. اطلع عليه بتاريخ 17 سبتمبر 2008. نسخة محفوظة 11 فبراير 2015 على موقع واي باك مشين.
    84. Levine، I.; et al. (1997). "Measurement of the Electromagnetic Coupling at Large Momentum Transfer". Physical Review Letters. 78: 424–427. Bibcode:1997PhRvL..78..424L. doi:10.1103/PhysRevLett.78.424. نسخة محفوظة 3 يونيو 2019 على موقع واي باك مشين.
    85. Murayama, H. (March 10–17, 2006). "Supersymmetry Breaking Made Easy, Viable and Generic". Proceedings of the XLIInd Rencontres de Moriond on Electroweak Interactions and Unified Theories. La Thuile, Italy. arXiv:0709.3041. الوسيط |CitationClass= تم تجاهله (مساعدة)—lists a 9% mass difference for an electron that is the size of the طول بلانك.
    86. Schwinger، J. (1948). "On Quantum-Electrodynamics and the Magnetic Moment of the Electron". فيزيكال ريفيو. 73 (4): 416–417. Bibcode:1948PhRv...73..416S. doi:10.1103/PhysRev.73.416. نسخة محفوظة 3 يونيو 2019 على موقع واي باك مشين.
    87. Huang، K. (2007). Fundamental Forces of Nature: The Story of Gauge Fields. World Scientific. صفحات 123–125. ISBN 981-270-645-3. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    88. Foldy، L.L.؛ Wouthuysen، S. (1950). "On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit". فيزيكال ريفيو. 78: 29–36. Bibcode:1950PhRv...78...29F. doi:10.1103/PhysRev.78.29. نسخة محفوظة 3 يونيو 2019 على موقع واي باك مشين.
    89. Sidharth، B.G. (2008). "Revisiting Zitterbewegung". International Journal of Theoretical Physics. 48: 497–506. Bibcode:2009IJTP...48..497S. arXiv:0806.0985. doi:10.1007/s10773-008-9825-8. "نسخة مؤرشفة". Archived from the original on 3 يونيو 2019. اطلع عليه بتاريخ 25 يونيو 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    90. Elliott، R.S. (1978). "The History of Electromagnetics as Hertz Would Have Known It". IEEE Transactions on Microwave Theory and Techniques. 36 (5): 806–823. Bibcode:1988ITMTT..36..806E. doi:10.1109/22.3600. نسخة محفوظة 5 أكتوبر 2018 على موقع واي باك مشين.
    91. Munowitz (2005:140).
    92. Crowell، B. (2000). Electricity and Magnetism. Light and Matter. صفحات 129–152. ISBN 0-9704670-4-4. "نسخة مؤرشفة". Archived from the original on 15 مايو 2020. اطلع عليه بتاريخ 30 مايو 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)صيانة CS1: BOT: original-url status unknown (link)
    93. Munowitz (2005:160).
    94. Mahadevan, R.; Narayan, R.; Yi, I. (1996). "Harmony in Electrons: Cyclotron and Synchrotron Emission by Thermal Electrons in a Magnetic Field". المجلة الفيزيائية الفلكية. 465: 327–337. arXiv:astro-ph/9601073. Bibcode:1996ApJ...465..327M. doi:10.1086/177422. الوسيط |CitationClass= تم تجاهله (مساعدة)
    95. Rohrlich, F. (1999). "The Self-Force and Radiation Reaction". American Journal of Physics. 68 (12): 1109–1112. Bibcode:2000AmJPh..68.1109R. doi:10.1119/1.1286430. الوسيط |CitationClass= تم تجاهله (مساعدة)
    96. Georgi, H. (1989). "Grand Unified Theories". In Davies, Paul (المحرر). The New Physics. مطبعة جامعة كامبريدج. صفحة 427. ISBN 0-521-43831-4. مؤرشف من الأصل في 15 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    97. Blumenthal, G.J.; Gould, R. (1970). "Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases". Reviews of Modern Physics. 42: 237–270. Bibcode:1970RvMP...42..237B. doi:10.1103/RevModPhys.42.237. الوسيط |CitationClass= تم تجاهله (مساعدة)
    98. Staff (2008). "The Nobel Prize in Physics 1927". مؤسسة نوبل. مؤرشف من الأصل في 01 ديسمبر 2017. اطلع عليه بتاريخ 28 سبتمبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة); تحقق من التاريخ في: |تاريخ أرشيف= (مساعدة)
    99. Chen, S.-Y.; Maksimchuk, A.; Umstadter, D. (1998). "Experimental observation of relativistic nonlinear Thomson scattering". نيتشر (مجلة). 396 (6712): 653–655. arXiv:physics/9810036. Bibcode:1998Natur.396..653C. doi:10.1038/25303. الوسيط |CitationClass= تم تجاهله (مساعدة)
    100. Beringer, R.; Montgomery, C.G. (1942). "The Angular Distribution of Positron Annihilation Radiation". فيزيكال ريفيو. 61 (5–6): 222–224. Bibcode:1942PhRv...61..222B. doi:10.1103/PhysRev.61.222. الوسيط |CitationClass= تم تجاهله (مساعدة)
    101. Buffa, A. (2000). College Physics (الطبعة 4th). No ID. صفحة 888. ISBN [[Special:BookSources/0130824445}|0130824445}]] تأكد من صحة |isbn= القيمة: invalid character (مساعدة). الوسيط |CitationClass= تم تجاهله (مساعدة)
    102. Eichler, J. (2005). "Electron–positron pair production in relativistic ion–atom collisions". Physics Letters A. 347 (1–3): 67–72. Bibcode:2005PhLA..347...67E. doi:10.1016/j.physleta.2005.06.105. الوسيط |CitationClass= تم تجاهله (مساعدة)
    103. Hubbell, J.H. (2006). "Electron positron pair production by photons: A historical overview". Radiation Physics and Chemistry. 75 (6): 614–623. Bibcode:2006RaPC...75..614H. doi:10.1016/j.radphyschem.2005.10.008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    104. Quigg, C. (June 4–30, 2000). "The Electroweak Theory". TASI 2000: Flavor Physics for the Millennium. Boulder, Colorado. صفحة 80. arXiv:hep-ph/0204104. الوسيط |CitationClass= تم تجاهله (مساعدة)
    105. Mulliken, R.S. (1967). "Spectroscopy, Molecular Orbitals, and Chemical Bonding". ساينس. 157 (3784): 13–24. Bibcode:1967Sci...157...13M. doi:10.1126/science.157.3784.13. PMID 5338306. الوسيط |CitationClass= تم تجاهله (مساعدة)
    106. Burhop, E.H.S. (1952). The Auger Effect and Other Radiationless Transitions. مطبعة جامعة كامبريدج. صفحات 2–3. ISBN 0-88275-966-3. الوسيط |CitationClass= تم تجاهله (مساعدة)
    107. Grupen, C. (2000). "Physics of Particle Detection". AIP Conference Proceedings. 536: 3–34. arXiv:physics/9906063. doi:10.1063/1.1361756. الوسيط |CitationClass= تم تجاهله (مساعدة)
    108. Jiles, D. (1998). Introduction to Magnetism and Magnetic Materials. CRC Press. صفحات 280–287. ISBN 0-412-79860-3. مؤرشف من الأصل في 11 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    109. Löwdin, P.O.; Erkki Brändas, E.; Kryachko, E.S. (2003). Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per- Olov Löwdin. سبرنجر. صفحات 393–394. ISBN 1-4020-1290-X. مؤرشف من الأصل في 15 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    110. McQuarrie, D.A.; Simon, J.D. (1997). Physical Chemistry: A Molecular Approach. University Science Books. صفحات 325–361. ISBN 0-935702-99-7. مؤرشف من الأصل في 12 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    111. Daudel, R. (1973). "The Electron Pair in Chemistry". Canadian Journal of Chemistry. 52: 1310–1320. doi:10.1139/v74-201. مؤرشف من الأصل في 8 يناير 2014. الوسيط |CitationClass= تم تجاهله (مساعدة)
    112. Rakov, V.A.; Uman, M.A. (2007). Lightning: Physics and Effects. مطبعة جامعة كامبريدج. صفحة 4. ISBN 0-521-03541-4. مؤرشف من الأصل في 14 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    113. Freeman, G.R. (1999). "Triboelectricity and some associated phenomena". Materials science and technology. 15 (12): 1454–1458. الوسيط |CitationClass= تم تجاهله (مساعدة)
    114. Forward, K.M.; Lacks, D.J.; Sankaran, R.M. (2009). "Methodology for studying particle–particle triboelectrification in granular materials". Journal of Electrostatics. 67 (2–3): 178–183. doi:10.1016/j.elstat.2008.12.002. الوسيط |CitationClass= تم تجاهله (مساعدة)
    115. Weinberg, S. (2003). The Discovery of Subatomic Particles. مطبعة جامعة كامبريدج. صفحات 15–16. ISBN 0-521-82351-X. مؤرشف من الأصل في 14 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    116. Lou, L.-F. (2003). Introduction to phonons and electrons. World Scientific. صفحات 162, 164. ISBN 978-981-238-461-4. مؤرشف من الأصل في 12 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    117. Guru, B.S.; Hızıroğlu, H.R. (2004). Electromagnetic Field Theory. مطبعة جامعة كامبريدج. صفحات 138, 276. ISBN 0-521-83016-8. مؤرشف من الأصل في 15 مايو 2020. اطلع عليه بتاريخ أغسطس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة); تحقق من التاريخ في: |تاريخ الوصول= (مساعدة)
    118. Achuthan, M.K.; Bhat, K.N. (2007). Fundamentals of Semiconductor Devices. ماكجرو هيل التعليم. صفحات 49–67. ISBN 0-07-061220-X. مؤرشف من الأصل في 12 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    119. Ziman, J.M. (2001). Electrons and Phonons: The Theory of Transport Phenomena in Solids. مطبعة جامعة أكسفورد. صفحة 260. ISBN 0-19-850779-8. مؤرشف من الأصل في 14 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    120. Main, P. (June 12, 1993). "When electrons go with the flow: Remove the obstacles that create electrical resistance, and you get ballistic electrons and a quantum surprise". نيو ساينتست. 1887: 30. مؤرشف من الأصل في 11 فبراير 2015. اطلع عليه بتاريخ 09 أكتوبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    121. Blackwell, G.R. (2000). The Electronic Packaging Handbook. CRC Press. صفحات 6.39–6.40. ISBN 0-8493-8591-1. مؤرشف من الأصل في 15 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    122. Durrant, A. (2000). Quantum Physics of Matter: The Physical World. CRC Press. صفحة http://books.google.com/books?id=F0JmHRkJHiUC&pg=PA43. ISBN 0-7503-0721-8. الوسيط |CitationClass= تم تجاهله (مساعدة)
    123. Staff (2008). "The Nobel Prize in Physics 1972". مؤسسة نوبل. مؤرشف من الأصل في 18 يونيو 2018. اطلع عليه بتاريخ 13 أكتوبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    124. Kadin, A.M. (2007). "Spatial Structure of the Cooper Pair". Journal of Superconductivity and Novel Magnetism. 20 (4): 285–292. arXiv:cond-mat/0510279. doi:10.1007/s10948-006-0198-z. الوسيط |CitationClass= تم تجاهله (مساعدة)
    125. "Discovery About Behavior Of Building Block Of Nature Could Lead To Computer Revolution". علم يوميا. July 31, 2009. مؤرشف من الأصل في 04 أبريل 2019. اطلع عليه بتاريخ 01 أغسطس 2009. الوسيط |CitationClass= تم تجاهله (مساعدة); تحقق من التاريخ في: |تاريخ أرشيف= (مساعدة)
    126. Jompol, Y. (2009). "Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid". ساينس. 325 (5940): 597–601. Bibcode:2009Sci...325..597J. doi:10.1126/science.1171769. PMID 19644117. مؤرشف من الأصل في 8 أغسطس 2009. الوسيط |CitationClass= تم تجاهله (مساعدة)
    127. Staff (2008). "The Nobel Prize in Physics 1958, for the discovery and the interpretation of the Cherenkov effect". مؤسسة نوبل. مؤرشف من الأصل في 29 أغسطس 2017. اطلع عليه بتاريخ 25 سبتمبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    128. Staff (August 26, 2008). "Special Relativity". مركز المعجل الخطي ستانفورد. مؤرشف من الأصل في 12 ديسمبر 2011. اطلع عليه بتاريخ 25 سبتمبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    129. Adams, S. (2000). Frontiers: Twentieth Century Physics. CRC Press. صفحة 215. ISBN 0-7484-0840-1. مؤرشف من الأصل في 11 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    130. Lurquin, P.F. (2003). The Origins of Life and the Universe. دار نشر جامعة كولومبيا. صفحة 2. ISBN 0-231-12655-7. الوسيط |CitationClass= تم تجاهله (مساعدة)
    131. Silk, J. (2000). The Big Bang: The Creation and Evolution of the Universe (الطبعة 3rd). Macmillan. صفحات 110–112, 134–137. ISBN 0-8050-7256-X. الوسيط |CitationClass= تم تجاهله (مساعدة)
    132. Christianto, V. (2007). "Thirty Unsolved Problems in the Physics of Elementary Particles" (PDF). Progress in Physics. 4: 112–114. مؤرشف من الأصل (PDF) في 3 يونيو 2016. اطلع عليه بتاريخ أغسطس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة); تحقق من التاريخ في: |تاريخ الوصول= (مساعدة)
    133. Kolb, E.W. (1980). "The Development of Baryon Asymmetry in the Early Universe". Physics Letters B. 91 (2): 217–221. Bibcode:1980PhLB...91..217K. doi:10.1016/0370-2693(80)90435-9. الوسيط |CitationClass= تم تجاهله (مساعدة)
    134. Sather, E. (Spring/Summer 1996). "The Mystery of Matter Asymmetry" (PDF). Beam Line. جامعة ستانفورد. مؤرشف من الأصل (PDF) في 20 يوليو 2018. اطلع عليه بتاريخ 01 نوفمبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة); تحقق من التاريخ في: |تاريخ= (مساعدة)
    135. Burles, S.; Nollett, K.M.; Turner, M.S. (1999). "Big-Bang Nucleosynthesis: Linking Inner Space and Outer Space". arXiv:astro-ph/9903300 الوسيط |class= تم تجاهله (مساعدة). الوسيط |CitationClass= تم تجاهله (مساعدة)
    136. Boesgaard, A.M.; Steigman, G. (1985). "Big bang nucleosynthesis – Theories and observations". Annual Review of Astronomy and Astrophysics. 23 (2): 319–378. Bibcode:1985ARA&A..23..319B. doi:10.1146/annurev.aa.23.090185.001535. الوسيط |CitationClass= تم تجاهله (مساعدة)
    137. Barkana, R. (2006). "The First Stars in the Universe and Cosmic Reionization". ساينس. 313 (5789): 931–934. arXiv:astro-ph/0608450. Bibcode:2006Sci...313..931B. doi:10.1126/science.1125644. PMID 16917052. مؤرشف من الأصل في 10 فبراير 2009. الوسيط |CitationClass= تم تجاهله (مساعدة)
    138. Burbidge, E.M. (1957). "Synthesis of Elements in Stars". Reviews of Modern Physics. 29 (4): 548–647. Bibcode:1957RvMP...29..547B. doi:10.1103/RevModPhys.29.547. الوسيط |CitationClass= تم تجاهله (مساعدة)
    139. Rodberg, L.S.; Weisskopf, V. (1957). "Fall of Parity: Recent Discoveries Related to Symmetry of Laws of Nature". ساينس. 125 (3249): 627–633. Bibcode:1957Sci...125..627R. doi:10.1126/science.125.3249.627. PMID 17810563. الوسيط |CitationClass= تم تجاهله (مساعدة)
    140. Fryer, C.L. (1999). "Mass Limits For Black Hole Formation". المجلة الفيزيائية الفلكية. 522 (1): 413–418. arXiv:astro-ph/9902315. Bibcode:1999ApJ...522..413F. doi:10.1086/307647. الوسيط |CitationClass= تم تجاهله (مساعدة)
    141. Parikh, M.K.; Wilczek, F. (2000). "Hawking Radiation As Tunneling". Physical Review Letters. 85 (24): 5042–5045. arXiv:hep-th/9907001. Bibcode:2000PhRvL..85.5042P. doi:10.1103/PhysRevLett.85.5042. PMID 11102182. الوسيط |CitationClass= تم تجاهله (مساعدة)
    142. Hawking, S.W. (1974). "Black hole explosions?". نيتشر (مجلة). 248 (5443): 30–31. Bibcode:1974Natur.248...30H. doi:10.1038/248030a0. الوسيط |CitationClass= تم تجاهله (مساعدة)
    143. Halzen, F.; Hooper, D. (2002). "High-energy neutrino astronomy: the cosmic ray connection". Reports on Progress in Physics. 66 (7): 1025–1078. arXiv:astro-ph/0204527. Bibcode:2002astro.ph..4527H. doi:10.1088/0034-4885/65/7/201. الوسيط |CitationClass= تم تجاهله (مساعدة)
    144. Ziegler, J.F. (1998). "Terrestrial cosmic ray intensities". IBM Journal of Research and Development. 42 (1): 117–139. doi:10.1147/rd.421.0117. الوسيط |CitationClass= تم تجاهله (مساعدة)
    145. Sutton, C. (August 4, 1990). "Muons, pions and other strange particles". نيو ساينتست. مؤرشف من الأصل في 11 فبراير 2015. اطلع عليه بتاريخ 28 أغسطس 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    146. Wolpert, S. (July 24, 2008). "Scientists solve 30-year-old aurora borealis mystery". جامعة كاليفورنيا. مؤرشف من الأصل في 30 يناير 2014. اطلع عليه بتاريخ 11 أكتوبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    147. Gurnett, D.A.; Anderson, R. (1976). "Electron Plasma Oscillations Associated with Type III Radio Bursts". ساينس. 194 (4270): 1159–1162. Bibcode:1976Sci...194.1159G. doi:10.1126/science.194.4270.1159. PMID 17790910. الوسيط |CitationClass= تم تجاهله (مساعدة)
    148. Martin, W.C.; Wiese, W.L. (2007). "Atomic Spectroscopy: A Compendium of Basic Ideas, Notation, Data, and Formulas". المعهد الوطني للمعايير والتقنية. مؤرشف من الأصل في 23 فبراير 2010. اطلع عليه بتاريخ 08 يناير 2007. الوسيط |CitationClass= تم تجاهله (مساعدة)
    149. Fowles, G.R. (1989). Introduction to Modern Optics. Courier Dover. صفحات 227–233. ISBN 0-486-65957-7. مؤرشف من الأصل في 15 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    150. Staff (2008). "The Nobel Prize in Physics 1989". مؤسسة نوبل. مؤرشف من الأصل في 21 يونيو 2017. اطلع عليه بتاريخ 24 سبتمبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    151. Ekstrom, P. (1980). "The isolated Electron" (PDF). ساينتفك أمريكان. 243 (2): 91–101. مؤرشف من الأصل (PDF) في 16 سبتمبر 2019. اطلع عليه بتاريخ 24 سبتمبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    152. Mauritsson, J. "Electron filmed for the first time ever" (PDF). جامعة لوند. مؤرشف من الأصل (PDF) في 25 مارس 2009. اطلع عليه بتاريخ 17 سبتمبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    153. Mauritsson, J. (2008). "Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope". Physical Review Letters. 100 (7): 073003. Bibcode:2008PhRvL.100g3003M. doi:10.1103/PhysRevLett.100.073003. PMID 18352546. مؤرشف من الأصل (PDF) في 27 فبراير 2017. الوسيط |CitationClass= تم تجاهله (مساعدة)
    154. Damascelli, A. (2004). "Probing the Electronic Structure of Complex Systems by ARPES". Physica Scripta. T109: 61–74. arXiv:cond-mat/0307085. Bibcode:2004PhST..109...61D. doi:10.1238/Physica.Topical.109a00061. الوسيط |CitationClass= تم تجاهله (مساعدة)
    155. Staff (April 4, 1975). "Image # L-1975-02972". مركز لانغلي البحثي, ناسا. مؤرشف من الأصل في 10 فبراير 2016. اطلع عليه بتاريخ 20 سبتمبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    156. Elmer, J. (March 3, 2008). "Standardizing the Art of Electron-Beam Welding". مختبر لورانس ليفرمور الوطني. مؤرشف من الأصل في 29 أغسطس 2013. اطلع عليه بتاريخ 16 أكتوبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    157. Schultz, H. (1993). Electron Beam Welding. Woodhead Publishing. صفحات 2–3. ISBN 1-85573-050-2. مؤرشف من الأصل في 15 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    158. Benedict, G.F. (1987). Nontraditional Manufacturing Processes. 19. CRC Press. صفحة 273. ISBN 0-8247-7352-7. مؤرشف من الأصل في 14 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    159. Ozdemir, F.S. (June 25–27, 1979). "Electron beam lithography". Proceedings of the 16th Conference on Design automation. San Diego, CA, USA: جمعية مهندسي الكهرباء والإلكترونيات. صفحات 383–391. مؤرشف من الأصل في 15 مارس 2020. اطلع عليه بتاريخ 16 أكتوبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    160. Madou, M.J. (2002). Fundamentals of Microfabrication: the Science of Miniaturization (الطبعة 2nd). CRC Press. صفحات 53–54. ISBN 0-8493-0826-7. مؤرشف من الأصل في 11 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    161. Jongen, Y.; Herer, A. (May 2–5, 1996). "Electron Beam Scanning in Industrial Applications". APS/AAPT Joint Meeting. الجمعية الفيزيائية الأمريكية. Bibcode:1996APS..MAY.H9902J. الوسيط |CitationClass= تم تجاهله (مساعدة)
    162. Beddar, A.S. (2001). "Mobile linear accelerators for intraoperative radiation therapy". AORN Journal. 74 (5): 700. doi:10.1016/S0001-2092(06)61769-9. مؤرشف من الأصل في 12 أغسطس 2015. اطلع عليه بتاريخ 26 أكتوبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة)
    163. Gazda, M.J.; Coia, L.R. (June 1, 2007). "Principles of Radiation Therapy". Cancer Network. مؤرشف من الأصل في 06 أبريل 2009. اطلع عليه بتاريخ 26 أكتوبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة); تحقق من التاريخ في: |تاريخ أرشيف= (مساعدة)
    164. Chao, A.W.; Tigner, M. (1999). Handbook of Accelerator Physics and Engineering. World Scientific. صفحات 155, 188. ISBN 981-02-3500-3. مؤرشف من الأصل في 23 فبراير 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    165. Oura, K. (2003). Surface Science: An Introduction. سبرنجر. صفحات 1–45. ISBN 3-540-00545-5. الوسيط |CitationClass= تم تجاهله (مساعدة)
    166. Ichimiya, A.; Cohen, P.I. (2004). Reflection High-energy Electron Diffraction. مطبعة جامعة كامبريدج. صفحة 1. ISBN 0-521-45373-9. مؤرشف من الأصل في 15 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    167. Heppell, T.A. (1967). "A combined low energy and reflection high energy electron diffraction apparatus". Journal of Scientific Instruments. 44 (9): 686–688. Bibcode:1967JScI...44..686H. doi:10.1088/0950-7671/44/9/311. الوسيط |CitationClass= تم تجاهله (مساعدة)
    168. McMullan, D. (1993). "Scanning Electron Microscopy: 1928–1965". جامعة كامبريدج. مؤرشف من الأصل في 04 أكتوبر 2018. اطلع عليه بتاريخ 23 مارس 2009. الوسيط |CitationClass= تم تجاهله (مساعدة); تحقق من التاريخ في: |تاريخ أرشيف= (مساعدة)
    169. Slayter, H.S. (1992). Light and electron microscopy. مطبعة جامعة كامبريدج. صفحة 1. ISBN 0-521-33948-0. مؤرشف من الأصل في 15 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    170. Cember, H. (1996). Introduction to Health Physics. McGraw-Hill Professional. صفحات 42–43. ISBN 0-07-105461-8. مؤرشف من الأصل في 15 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    171. Erni, R. (2009). "Atomic-Resolution Imaging with a Sub-50-pm Electron Probe". Physical Review Letters. 102 (9): 096101. Bibcode:2009PhRvL.102i6101E. doi:10.1103/PhysRevLett.102.096101. PMID 19392535. الوسيط |CitationClass= تم تجاهله (مساعدة)
    172. Bozzola, J.J.; Russell, L.D. (1999). Electron Microscopy: Principles and Techniques for Biologists. Jones & Bartlett Publishers. صفحات 12, 197–199. ISBN 0-7637-0192-0. مؤرشف من الأصل في 11 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    173. Flegler, S.L.; Heckman Jr., J.W.; Klomparens, K.L. (1995). Scanning and Transmission Electron Microscopy: An Introduction (الطبعة Reprint). مطبعة جامعة أكسفورد. صفحات 43–45. ISBN 0-19-510751-9. الوسيط |CitationClass= تم تجاهله (مساعدة)
    174. Bozzola, J.J.; Russell, L.D. (1999). Electron Microscopy: Principles and Techniques for Biologists (الطبعة 2nd). Jones & Bartlett Publishers. صفحة 9. ISBN 0-7637-0192-0. مؤرشف من الأصل في 14 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    175. Freund, H.P.; Antonsen, T. (1996). Principles of Free-Electron Lasers. سبرنجر. صفحات 1–30. ISBN 0-412-72540-1. مؤرشف من الأصل في 11 مارس 2020. الوسيط |CitationClass= تم تجاهله (مساعدة)
    176. Kitzmiller, J.W. (1995). Television Picture Tubes and Other Cathode-Ray Tubes: Industry and Trade Summary. DIANE Publishing. صفحات 3–5. ISBN 0-7881-2100-6. الوسيط |CitationClass= تم تجاهله (مساعدة)
    177. Sclater, N. (1999). Electronic Technology Handbook. McGraw-Hill Professional. صفحات 227–228. ISBN 0-07-058048-0. الوسيط |CitationClass= تم تجاهله (مساعدة)
    178. Staff (2008). "The History of the Integrated Circuit". مؤسسة نوبل. مؤرشف من الأصل في 09 يناير 2010. اطلع عليه بتاريخ 18 أكتوبر 2008. الوسيط |CitationClass= تم تجاهله (مساعدة); تحقق من التاريخ في: |تاريخ أرشيف= (مساعدة)
    179. "LDLP - Librairie Du Liban Publishers". اطلع عليه بتاريخ 19 مارس 2019. نسخة محفوظة 13 يوليو 2019 على موقع واي باك مشين.
    180. "TermDetails". اطلع عليه بتاريخ 19 مارس 2019. نسخة محفوظة 19 يوليو 2019 على موقع واي باك مشين.
    181. فُعَيل ;ref> 9782035862211 ,p595/595ص,Arabe Dictionnaire (arabe-français), La Rousse

      وصلات خارجية

      • بوابة كيمياء فيزيائية
      • بوابة إلكترونيات
      • بوابة الفيزياء
      • بوابة الكيمياء
      • بوابة طاقة
      • بوابة علم المواد
      • بوابة علوم
      • بوابة كهرباء
      • بوابة ميكانيكا الكم
      This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.