دالة غاما

في الرياضيات، دالة غاما (بالإنجليزية: Gamma function) (والممثلة عموما بالحرف الإغريقي Γ) هي امتداد لدالة المضروب في الأعداد الحقيقية والمركبة. إذن، دالة غاما هي دالة تحقق ما يلي بالنسبة عدد صحيح موجب n:

المحتوى هنا ينقصه الاستشهاد بمصادر. يرجى إيراد مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018)
منحنى لدالة غاما على طول المحور الحقيقي
منحنى لدالة غاما في معلم مركب

دالة غاما هي دالة معرفة عند جميع الأعداد المركبة باستثناء الأعداد الصحيحة السالبة. فللعدد z الذي يتكون من جزء حقيقي موجب تعرف دالة غاما كما يلي:

ويمكن أن يمتد هذا التعريف بالامتداد التحليلي لباقي المستوى المركب عدا الأعداد غير الموجبة الصحيحة (حيث للدالة أقطاب).

انظر إلى تحويل ميلين.

تظهر دالة غاما في العديد من دوال التوزيعات الاحتمالية، مما يجعلها مهمة في مجالات الاحتمال والإحصاء كما في مجال التوافقيات.

أهداف تعريف دالة غاما

من حيث التبيان، من السهل تمديد دالة عاملي إلى أعداد غير طبيعية، ولكن هل من صيغة تمثل المنحنى الناتج عن هذا التمديد؟

تعريف

التعريف الأساسي

الصيغة المعممة لدالة غاما على المستوى العقدي

عالم الرياضيات الفرنسي ليجاندر هو أول من استعمل الرمز (Γ(z. باستعمال التكامل بالتجزيء، يمكن أن نجد أن دالة غاما تحقق المعادلة التالية :

علما أن 1 = (Γ(z، نحصل على ما يلي:

تعريفات أخرى

حيث ...γ ≈ 0.577216 هي ثابتة أويلر-ماسكيروني.

دالة غاما في المستوى العقدي

خصائص

خصائص عامة

انظر إلى تكامل غاوسي.

الامتداد باستعمال متسلسلة فورييه

صيغة راب

دالة Pi

التكامل عبر لوغارتم دالة غاما

العلاقة بدوال أخرى

قيم خاصة

فيما يلي بعض من القيم الخاصة لدالة غاما

تقريبات

تطبيقات

التاريخ

القرن الثامن عشر : أويلر وستيرلينغ

معضلة تمديد دالة العاملي إلى الأعداد غير الصحيحة درست لأول مرة من طرف كل من دانييل برنولي وكريستيان غولدباخ في عشرينات القرن الثامن عشر. إلا أنها حلحلت من طرف عالم الرياضيات ليونهارت أويلر. كان ذلك في نهاية ذلك العقد ذاته. أعطى أويلر تعريفين اثنين لدالة عاملي. الأول لم يكن تكامله ولكنه كان جداءا غير منته.

والذي أخبر به غولدباخ في رسالة أرسلها إليه في الثالث عشر من أكتوبر عام 1729. كتب أويلر مجددا إلى غولدباخ في الثامن من يناير عام 1730 من إجل إخباره أن توصل إلى صيغة أخرى عل شكل تكامل تساوي دالة العاملي.

انظر إلى جيمس ستيرلينغ وإلى صيغته صيغة ستيرلينغ وإلى جداء غير منته.

القرن التاسع عشر : غاوس وويرستراس وليجاندر

انظر إلى كارل فريدريش غاوس وإلى كارل ويرستراس وإلى أدريان ماري ليجاندر.

القرن العشرون

انظر أيضا

مراجع

وصلات خارجية

  • NIST Digital Library of Mathematical Functions:Gamma function
  • Pascal Sebah and Xavier Gourdon. Introduction to the Gamma Function. In PostScript and HTML formats.
  • C++ reference for std::tgamma
  • Examples of problems involving the gamma function can be found at Exampleproblems.com.
  • Hazewinkel، Michiel، المحرر (2001)، "Gamma function"، Encyclopedia of Mathematics، سبرنجر، ISBN 978-1-55608-010-4
  • Wolfram gamma function evaluator (arbitrary precision)
  • قالب:WolframFunctionsSite
  • Volume of n-Spheres and the Gamma Function at MathPages
  • إيريك ويستاين، Gamma Function، ماثوورلد Mathworld (باللغة الإنكليزية).
  • بوابة تحليل رياضي
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.