عدد حقيقي

في الرياضيات، عدد حقيقي (بالإنجليزية: Real number)‏ هو قيمة كمية ما تمثَّل عادة على مستقيم متصل. ظهرت كلمة حقيقي للمرة الأولى في القرن السابع عشر بواسطة رينيه ديكارت ، الذي ميز بين الجذور الحقيقية والخيالية لكثيرات الحدود. مجموعة الأعداد الحقيقية هي مجموعة أعداد تتكون من مجموعة الأعداد غير النسبية (R\Q) ومجموعة الأعداد الكسرية المنتهية والاعداد الكسرية المتكررة أو الدورية (Q). تشمل مجموعة الأعداد الكسرية مجموعة الأعداد الصحيحة (Z) والكسور، وتشمل مجموعة الأعداد الصحيحة مجموعة الأعداد الطبيعية (N). وبذلك تكون:

مجموعة الأعداد الطبيعية مجموعة جزئية من مجموعة الأعداد الصحيحة والأخيرة مجموعة جزئية من مجموعة الأعداد الكسرية والأخيرة مجموعة جزئية من مجموعة الأعداد الحقيقية.

مجموعة الأعداد الطبيعية تبدأ من الصفر إلى موجب ما لا نهاية بزيادة واحد صحيح في كل مرة،,وعرفت بهذا الاسم كوننا يمكن ملاحظتها في الطبيعة من حولنا؛ أما مجموعة الأعداد الصحيحة فتشتمل على الأعداد من سالب ما لا نهاية بالإضافة إلى مجموعة الأعداد الطبيعية بزيادة واحد صحيح كل مرة، أما الأعداد الكسرية فتتكون من كسور الأعداد الصحيحة في صورة بسط ومقام، أما الأعداد الحقيقية فتشمل المجموعات السابقة كلها بالإضافة إلى الأعداد التي لا يمكن كتابتها على شكل كسور مثل الπ (الباي) أي الأعداد اللا كسريةالجذر التربيعي الذي لا يعطي رقمًا صحيحًا مثل جذر2

يمكن تصور الأعداد الحقيقية بأنها أعداد غير متناهية على خط مستقيم. وتأخذ الأعداد الحقيقية اسمها من تضادها مع فكرة الأعداد التخيلية. كما يمكن لها أن تقوم بقياس الكميات المستمرة على اختلافها. يمكن التعبير عنها بالكسور العشرية التي تكون عادة سلسلة من الأرقام غير منتهية وغير دورية في حالة الأرقام غير الكسرية أو الدورية في حالة الأعداد الكسرية. نشأت فكرة الأعداد الحقيقية بسبب وجود أطوال لا يمكن التعبير عن قياسها باستعمال أعداد صحيحة أو أعداد كسرية.

في هذه المجموعة المعادلة الآتية: لها حل.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.