مضلع منتظم

في الهندسة الإقليدية، المضلع المنتظم (بالإنجليزية: Regular polygon)‏ هو كل مضلع بسيط جميع زواياه متساوية في القياس.[1][2][3] من الممكن أن يكون المضلع المنتظم محدباً أو نجمياً، النجمة الخماسية مثالا.

مضلع منتظم سباعي الأضلاع .

كون أضلاع متعدد أضلاع متساويةً في القياس لا يجعمل منه متعدد أضلاع منتظم، بل يجعل منه مضلعا متساوي الأضلاع. الصنفان مختلفان. المعين على سبيل المثال، هو رباعي أضلاع متساوي الأضلاع وليس بمضلع منتظم.

خصائص عامة

هذه الخصائص تنطبق على المضلعات المحدبة والنجمية:

التماثل

انظر إلى زمرة التماثل.

المضلعات القابلة للإنشاء

بعض المضلعات المنتظمة قابلة للإنشاء بالمسطرة والفرجار بسهولة وبعضها غير قابل للإنشاء بالمسطرة والفرجار بتاتا، سباعي الأضلع مثالا.

علم علماء الرياضيات الإغريق كيفية إنشاء مضلعات منتظمة عدد أضلاعهن الثلاثة والأربعة والخمسة، كما علموا إنشاء مضلع منتظم عدد أضلاعه ضعف عدد أضلاع مضلع منتظم معلوم. أدى بهم ذلك إلى طرح السؤال التالي:

هل جميع المضلعات المنتظمة قابلة للإنشاء مهما كان عدد أضلاعهن ؟ وإذا كان الجواب بالنفي، فما هن المضلعات القابلة للإنشاء وما هن المضلعات غير ذلك ؟

في عام 1796، برهن كارل فريدريش غاوس على قابلية إنشاء مضلع منتظم عدد أضلاعه سبعة عشر. بعد ذلك بخمس سنوات طور نظرية المعروفة باسم الدورة الغاوسية في كتابه استفسارات حسابية. هذه النظرية مكنته من إعطاء شرط كاف لقابلية الإنشاء وهو كما يلي:

يكون مضلع منتظم عدد أضلاعه يساوي n قابلا للإنشاء بالفرجار والمسطرة إذا كان عدد أضلاعه هذا جداءا لقوة ما لاثنين من جهة وعدد معين من أعداد فيرما الأولية، مختلفةً عن بعضها البعض من جهة ثانية (بما في ذلك الحالة حيث يكون عددهن مساويا للصفر).
على سبيل المثال، 17 هو عدد أولي لفيرما، 1 هو قوة لاثنين من الدرجة الصفر. هذا جعل مضلعا منتظما عدد أضلاعه سبعة عشر قابلا للإنشاء.
على سبيل المثال الثاني، 8 هو قوة لاثنين من الدرجة الثالثة. هذا يجعل من ثماني أضلاع منتظم قابلا للاإنشاء بالمسطرة والبركار (الحالة حيث يكون عدد أعداد فيرما الأولية في الجداء المذكور أعلاه مساويا للصفر).

انظر أيضا

مراجع

  1. "معلومات عن مضلع منتظم على موقع zthiztegia.elhuyar.eus". zthiztegia.elhuyar.eus. مؤرشف من الأصل في 13 ديسمبر 2019. الوسيط |CitationClass= تم تجاهله (مساعدة)
  2. "معلومات عن مضلع منتظم على موقع cultureelwoordenboek.nl". cultureelwoordenboek.nl. مؤرشف من الأصل في 08 ديسمبر 2016. الوسيط |CitationClass= تم تجاهله (مساعدة)
  3. "معلومات عن مضلع منتظم على موقع britannica.com". britannica.com. مؤرشف من الأصل في 06 سبتمبر 2015. الوسيط |CitationClass= تم تجاهله (مساعدة)

    وصلات خارجية

    • بوابة رياضيات
    • بوابة هندسة رياضية
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.