معادلة تفاضلية

في الرياضيات، المعادلة التفاضلية هي معادلة تربط دالة واحدة أو أكثر ومشتقاتها. في التطبيقات، تمثل الدوال عمومًا كميات مادية، وتمثل المشتقات معدلات التغيير الخاصة بها، وتعرف المعادلة التفاضلية العلاقة بين الاثنين. نظرًا لأن هذه العلاقات شائعة جدًا، تلعب المعادلات التفاضلية دورًا بارزًا في العديد من التخصصات بما في ذلك الهندسة والفيزياء والاقتصاد وعلم الأحياء.

تتكون دراسة المعادلات التفاضلية بشكل أساسي من دراسة حلولها (مجموعة الوظائف التي تلبي المعادلة)، وخصائص حلولها. أبسط المعادلات التفاضلية يمكن حلها بواسطة صيغ واضحة. ومع ذلك، قد يتم تحديد العديد من خصائص حلول معادلة تفاضلية معينة دون حسابها بالضبط.

في حالة عدم توفر تعبير مغلق للحلول، قد يتم تقريب الحلول عدديًا باستخدام أجهزة الحاسوب. تركز نظرية الأنظمة الديناميكية على التحليل النوعي للأنظمة التي تصفها المعادلات التفاضلية، في حين تم تطوير العديد من الطرق العددية لتحديد الحلول مع درجة معينة من الدقة.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.