ناقلية حرارية

الناقلية الحرارية في الفيزياء والكيمياء هي خاصية المادة التي تشير إلى قابلية المادة لنقل الحرارة. تقاس الناقلية الحرارية لمادة بوحدة واط/متر/كلفن.

وتختلف النافلية الحرارية من مادة إلى مادة فالمعادن عموما تكون جيدة الناقلية الحرارية مثل النحاس والحديد والفضة ، أما الأخشاب و البلاستيك مثلا ، فهي ضعيفة التوصيل الحراري.

إن الحرارة التي تسري في جسم صلب بانتقال الإلكترونات الحرة انتقالاً فيزيائياً وباهتزازات الذرات والجزيئات تتوقف عن السريان عندما تتساوى درجات الحرارة في جميع نقاط الجسم الصلب وتتساوى كذلك مع درجة حرارة الوسط المحيط. ويحدث سريان إجمالي للحرارة في الجسم (عند الوصول إلى حالة التوازن الحراري) يعتمد في قيمته على التباين الحراري بين مختلف نقاط الناقلية الحرارية تجريبياً بتحديد درجة الحرارة تابعاً للزمن على امتداد طول القضيب أو على سطح صفائح مسطحة، في حين يتم التحكم آنياً في الدخل الخارجي والخرج الحراريين من سطوح القضيب أو من حواف الصفيحة.

بوجه عام ، التوصيل الحراري يتناسب طردياً مع التوصيل الكهربائي ، مثل المعادن لها قيم عالية على حد سواء. من الاستثناءات الملحوظة الألماس ، الذي له موصلية حرارية عالية ، ولكن توصيل كهربائي ضعيف.

الوحدات

في نظام الوحدات الدولية (SI) تقاس الناقلية الحرارية بالواط لكل متر.كلفن (و/(م.ك)). تستخدم بعض الأوراق البحثية الواط لكل سنتيمتر.كلفن (و/(سم.ك)).

في نظام الوحدات الإمبراطورية، تقاس الناقلية الحرارية بالوحدة الحرارية البريطانية لكل ساعة.قدم.درجة فهرنهايت (و.ح.ب/(سا×ق×°ف).[12]

بعد الناقلية الحرارية هو M1L1T−3Θ−1 معبرًا عنه بالكتلة (M) والطول (L) والزمن (T) ودرجة الحرارة (Θ).

تستخدم وحدات أخرى تتعلق بشدة بالناقلية الحرارية بشكل شائع في مجالي البناء والنسيج. يستخدم مجال البناء وحدات قيمة المقاومة (قيمة آر) وقيمة الانتقالية (قيمة يو). مع أنهما يتعلقان بالناقلية الحرارية للمادة المستخدمة في منتج العزل فإن كلًّا من قيمة آر وقيمة يو تعتمد على سماكة المنتج.

كذلك تستخدم صناعة النسيج عدة وحدات بينها توغ (المقاومة الحرارية) وكلو (عزل الأقمشة) اللتان تعبران عن المقاومة الحراري بطرق تحاكي قيم آر المستخدمة في مجال البناء.

القياس

هناك العديد من الطرق لقياس الناقلية الحرارية، وكل منها ملائم لمجال محدود من المواد. بشكل عام هناك نوعان من تقنيات القياس: الحالة المستقرة والعابرة. تستخرج تقنيات الحالة المستقرة الناقلية الحرارية من قياسات على حالة مادة عند الوصول إلى استقرار منحني درجات الحرارة، في حين تعمل تقنيات الحالة العابرة على الحالة اللحظية للنظام أثناء الاقتراب من حالة الاستقرار. لا تتطلب تقنيات الحالة المستقرة، التي لا وجود فيها لعنصر زمني صريح، تحليل إشارة معقد (الحالة المستقرة تعني إشارات ثابتة). سيئتها أنها تحتاج تحضيرًا جيدًا لمكان إجراء الاختبار، ولا يمكن إجراء قياسات سريعة بسبب الوقت الذي يحتاجه الوصول إلى الحالة المستقرة.

بالمقارنة مع المواد الصلبة فإن دراسة الخصائص الحرارية للموائع تجريبيًّا أمر أصعب. يرجع هذا إلى أنه بالإضافة إلى التوصيل الحراري، يوجد عادةً انتقال طاقة بالحمل والإشعاع ما لم تتخذ إجراءات مناسبة للحد من هاتين العمليتين. يمكن أن ينتج عن تشكل طبقة حدية عازلة أيضًا انخفاض ملحوظ في الناقلية الحرارية.[13][14]

جدول قيم الناقلية الحرارية لبعض المواد

المادة الناقلية الحرارية
واط لكل متر كلفن
اسمنت, بورتلاند [15] 0.29
خرسانة, حجر [15] 1.7
هواء 0.025
خشب 0.04 - 0.4
كحول، زيت 0.1 - 0.21
تربة 1.5
مطاط 0.16
ماء (سائل) 0.6
زجاج 1.1
ثلج 2
صلب غير قابل للصدأ[16] 12.11 ~ 45.0
رصاص 35.3
ألمنيوم 237
ذهب 318
نحاس 401
فضة 429
ألماس 900 - 2320

انظر أيضًا

مراجع

  1. Bird, R. Byron; Stewart, Warren E.; Lightfoot, Edwin N. (2007), Transport Phenomena (الطبعة 2nd), John Wiley & Sons, Inc., صفحة 266, ISBN 978-0-470-11539-8 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
  2. Bird, Stewart, and Lightfoot pp. 266-267
  3. Holman, J.P. (1997), Heat Transfer (الطبعة الثامنة), McGraw Hill, صفحة 2, ISBN 0-07-844785-2 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
  4. Bejan, Adrian (1993), Heat Transfer, John Wiley & Sons, صفحات 10–11, ISBN 0-471-50290-1 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
  5. Bird, Stewart, & Lightfoot, p. 267
  6. Bejan, p. 34
  7. Bird, Stewart, & Lightfoot, p. 305
  8. Gray, H.J.; Isaacs, Alan (1975). A New Dictionary of Physics (الطبعة 2nd). Longman Group Limited. صفحة 251. ISBN 0582322421. الوسيط |CitationClass= تم تجاهله (مساعدة)
  9. ASTM C168 − 15a Standard Terminology Relating to Thermal Insulation.
  10. Bird, Stewart, & Lightfoot, p. 268
  11. Incropera, Frank P.; DeWitt, David P. (1996), Fundamentals of heat and mass transfer (الطبعة 4th), Wiley, صفحات 50–51, ISBN 0-471-30460-3 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
  12. Perry, R. H.; Green, D. W., المحررون (1997). Perry's Chemical Engineers' Handbook (الطبعة 7th). ماكجرو هيل التعليم. Table 1–4. ISBN 978-0-07-049841-9. الوسيط |CitationClass= تم تجاهله (مساعدة)
  13. Daniel V. Schroeder (2000), An Introduction to Thermal Physics, Addison Wesley, صفحة 39, ISBN 0-201-38027-7 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
  14. Chapman, Sydney; Cowling, T.G. (1970), The Mathematical Theory of Non-Uniform Gases (الطبعة 3rd), Cambridge University Press, صفحة 248 الوسيط |CitationClass= تم تجاهله (مساعدة); الوسيط |separator= تم تجاهله (مساعدة)CS1 maint: ref=harv (link)
  15. Thermal Conductivity of some common Materials نسخة محفوظة 25 يوليو 2017 على موقع واي باك مشين.
  16. Thermal Conductivity of Metals نسخة محفوظة 27 نوفمبر 2017 على موقع واي باك مشين.
    • بوابة كيمياء فيزيائية
    • بوابة الفيزياء
    • بوابة الكيمياء
    • بوابة طاقة
    • بوابة علم المواد
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.