استيفاء

في الرياضيات وبالتحديد في التحليل العددي، الاستيفاء أو الاستقراء الداخلي (بالإنجليزية: interpolation)‏ (يستخدم أحيانا مصطلح استكمال أو استكمال داخلي) هي أحد الطرق الرياضية لإنشاء نقاط بيانية جديدة اعتمادا على مجموعة متقطعة من النقاط البيانية المحددة سلفا (مستوفين كافة النقاط).

في الهندسة التطبيقية والعلوم، غالبا ما تكون نتائج التجارب مجموعة من النقاط البيانية data points، تؤخذ بالاستعيان الإحصائي أو من خلال إجراء تجربة في شروط محددة، يلي تحديد هذه النقاط تشكيل الدالة الرياضية التي تناسب بأقرب شكل نقاط البيانات الموجودة لدينا. هذه العملية تدعى ملائمة المنحنى curve fitting. ويعتبر الاستيفاء (الاستقراء الداخلي) حالة خاصة من ملائمة المنحنى، يجب أن يمر فيه المنحنى تماما من النقاط البيانية (استيفاء كامل النقاط في عملية الملائمة).

نفترض حصولنا على قائمة بقيم دالة غير معروفة (f(x معتمدة على x، كالآتي:

x

(f(x

00
10.8415
20.9093
30.1411
4−0.7568
5−0.9589
6−0.2794

فعملية الاستيفاء هي وسيلة للحصول على قيم بين النقاط (التي تكون عادة معينة عمليا ) ، مثل قيمة الدالة عند النقطة x = 2.5.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.