تكامل خطي

في الرياضيات، التكامل الخطي (بالإنجليزية: Line integral)‏ يدعى أحيانًا بـتكامل المسار أو تكامل المنحنى، هو تكامل يتم فيه حساب تكامل الدالة على منحنى. وينبغي عدم الخلط بين هذا التكامل وحساب طول قوس بالتكامل. هناك العديد من التكاملات الخطية كما أن هناك حالة خاصة من التكامل على مسار مغلق في بعدين أو المستوى العقدي هي تكامل الكفاف.

يمكن أن تكون الدالة المكاملة حقل قياسي أو حقل متجهي. قيمة التكامل الخطي عبارة عن مجموع قيم المجال عند جميع النقاط على المنحنى، يتم توزينها بدالة قياسية معينة على المنحنى (طول القوس عادة، أو بالنسبة لمجال متجه، الضرب القياسي للمجال المتجه مع متجه تفاضلي في المنحنى). هذا التوزين يميز التكامل الخطي عن التكاملات البسيطة المعرفة على فترات. العديد من الصيغ البسيطة في الفيزياء، (على سبيل المثال لحساب الشغل الميكانيكي, ) لها تماثليات طبيعية متصلة بدلالة التكاملات الخطية (). يستطيع التكامل الخطي إيجاد الشغل الميكانيكي المبذول على جسم متحرك في مجال كهربي أو جاذبية مثلًا.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.