عدد غير أولي

العدد غير الأولي أو العدد المؤلف أو حتى العدد المركب (بالإنجليزية: Composite number)‏، هو عدد صحيح موجب ذو قواسم غير بديهية يمكن التعبير عنه بضرب عددين صحيحين أصغر منه. كل عدد هو غير أولي إذا كان يقبل القسمة على عدد واحد على الأقل غير الواحد ونفسه. بذلك يكون كل عدد صحيح أكبر من الواحد إما أوليا إما مركبا. أما العددان 0 و 1 فلا يعتبران أوليين ولا مركبين.

فعلى سبيل المثال:

  • العدد 14 مركب لأنه حاصل ضرب عددين صحيحين أصغر منه وهما 2 و 7.
  • العدد 21 عدد مركب لأنه من الممكن كتابته جداء عوامل 3 و 7 حيث كل من 7 و 3 قواسم غير بديهية للعدد 21.

على العكس العددان 2 و 3 ليسا مركبين لأنه لا كتابتهم إلا في صيغة 1*2 و 3*1. وكذلك الرقم 11 فهو عدد غير مركب (أولي) لأنه لا يمكن كتابته إلا في صورة 11*1 فقط وهذه العوامل هي قواسم بديهية للرقم 11.

قواسم العدد 150 هي :

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150. (متسلسلة A002808 في OEIS)

كل عدد غير أولي (مركب) يمكن صياغته في صورة حاصل ضرب عددين أو أكثر. فعلى سبيل المثال العدد المركب 299 يمكن كتابته في شكل 13*23. والرقم المركب 360 يمكن استخدام المبرهنة الأساسية في الحسابيات لكتابته في الشكل التالي 23 × 32 × 5.

يوجد العديد من الاختبارات لمعرفة هل الرقم أولي أم مركب، بدون الحاجة إلى تحليل الرقم لمعرفة قواسمة المشتركة.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.