مبرهنة القيمة الوسطى

في علم الرياضيات، مبرهنة التزايدات المنتهية هي لازمة (نتيجة) لمبرهنة رول.

مبرهنة القيمة الوسطى
 

النوع مبرهنة  
الصيغة  

      النص : لتكن f دالة عددية f : [a, b] → ℝ بحيث a <b، إذا كانت f متصلة على المجال المغلق [a, b] وقابلة للاشتقاق على المجال المفتوح ]a, b[، فإنه يوجد على الأقل عدد حقيقي c ينتمي للمجال ]a, b[ بحيث :

      .

      في الحقيقة، وتبعا لهذه الشروط، تكون قيمة الدالة في a وb واحدة. وبتطبيق مبرهنة رول، فإنها تملك نقطة معينة c في ]a ; b[ ونظرا لأن المشتقة في c تساوي الصفر فإننا نجد المعادلة السابقة.

      هندسيا، تقترح علينا مبرهنة القيمة الوسطى أنه لكل مستقيم يقطع منحنى قابل للاشتقاق، يوجد مستقيم مماس لهذا المنحنى مواز للمستقيم القاطع.

      This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.