مبرهنة بايز

في نظرية الاحتمالات والإحصاء، تصف مبرهنة بايز (التي تعرف أيضا بقانون بايز أو قاعدة بايز) احتمال وقوع حدث، بناءً على المعرفة المسبقة بالظروف التي قد تكون ذات صلة بالحدث. على سبيل المثال، إذا كان السرطان مرتبطًا بالتقدم في العمر، فعند استخدام مبرهنة بايز، يمكن استخدام عمر الشخص لإجراء تقييم لاحتمال إصابته بالسرطان أكثر دقة مما يمكن عمله دون معرفة عمر الشخص.

أحد التطبيقات العديدة لمبرهنة بايز هو الاستدلال البايزي وهي أحد طرق الاستدلال الإحصائي. عند تطبيق الاستدلال البايزي، قد يكون للاحتمالات التي تنطوي عليها مبرهنة بايز (Bayesian interpretation of probability) مدلول مختلف عن المفهوم التكراري للاحتمالات (Frequentist interpretation of probability). باستخدام التفسير البايزي للاحتمالات (Bayesian interpretation of probability) ، فإن النظرية تبين إلى أي درجة يجب أن تتغير درجة اعتقادنا في أمر ما (وهو ما نعبر عنه على شكل احتمال حدوث هذا الأمر) بعد الأخذ في الاعتبار الأدلة الجديدة التي أصبحت متوفرة. لذلك فان الاستدلال البايزي يعد مفهوما أساسيا في الإحصاء البايزي.

سميت مبرهنة بايز على اسم القس توماس بايز (1701 - 1761) ، الذي استخدم الاحتمال الشرطي لأول مرة لتوفير خوارزمية (في فرضيته رقم 9) الذي تستخدم القرائن(evidences) لحساب حدود متغير غير معروف،

هذه الخوارزمية نشرت تحت عنوان مقال نحو حل مشكلة في عقيدة الاحتمالات (عام 1763). فيما أسماه ب”تعليق” ، طور بايز خوارزميته لتشمل أي مسبب غير معروف.

استخدم العالم بيير لابلاس في عام 1774 (وبعد ذلك في بحثه بعنوان “نظرية الاحتمالات التحليلية” الذي نشرعام 1812) الاحتمال الشرطي لصياغة علاقة الاحتمال البعدي (أو اللاحق) المحدث بالاحتمال القبلي (أو المسبق) بعلومية الأدلة. ثم جاء بعد ذلك السير هارولد جيفريز ليضع كلا من خوارزمية بايز وصياغة لابلاس على أساس بديهي. كتب جيفريز أن أهمية مبرهنة بايز "لنظرية الاحتمالات هي كأهمية نظرية فيثاغورس للهندسة."

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.