معادلات ماكسويل

معادلات ماكسويل هي مجموعة من المعادلات التفاضلية الجزئية المقترنة التي تشكل، إلى جانب قانون قوة لورنتس، أساس الكهرومغناطيسية التقليدية والبصريات التقليدية والدوائر الكهربائية. توفر المعادلات نموذجًا رياضيًا للتكنولوجيات الكهربائية والبصرية وتكنولوجيا الراديو، مثل توليد القدرة الكهربائية والمحركات الكهربائية والاتصالات اللاسلكية والعدسات والرادار وما إلى ذلك. تصف معادلات ماكسويل آلية توليد الحقول الكهربائية والمغناطيسية بواسطة الشحنات والتيارات والتغييرات في الحقول. إحدى النتائج المهمة للمعادلات هي إثبات أن الحقول الكهربائية والمغناطيسية المتذبذبة تنتشر بسرعة ثابتة (سرعة الضوء c) في الفراغ. يمكن لهذه الموجات المعروفة باسم الإشعاع الكهرومغناطيسي امتلاك أطوال موجية مختلفة لإنتاج طيف كهرومغناطيسي يتراوح بين الموجات الراديوية إلى أشعة غاما. سميت المعادلات نسبةً لعالم الفيزياء والرياضيات جيمس كليرك ماكسويل، الذي نشر شكلًا مبكرًا من المعادلات التي تضمنت قانون قوة لورنتس بين عامي 1861 و1862. استخدم ماكسويل المعادلات أولًا لاقتراح أن الضوء هو ظاهرة كهرومغناطيسية.

تمتلك المعادلات شكلين رئيسيين. تتمتع معادلات ماكسويل المجهرية بقابلية شاملة للتطبيق ولكنها غير عملية للحسابات العادية. تربط هذا المعادلات الحقلين الكهربائي والمغناطيسي بالشحنة والتيار الكليين، بما في ذلك الشحنات والتيارات المعقدة في المواد على المقياس الذري. تُعرّف معادلات ماكسويل الجاهرية حقلين إضافيين جديدين يصفان سلوك المادة على نطاق كبير دون الحاجة للأخذ بعين الاعتبار شحنات المقياس الذري والظواهر الكمومية مثل اللف المغزلي. ومع ذلك، يتطلب استخدامها معاملات محددة تجريبيًا لوصف ظواهر استجابة المواد للمؤثرات الكهرومغناطيسية.

غالبًا ما يُستخدم مصطلح معادلات ماكسويل في صياغات بديلة مماثلة. من المُفضل استخدام أشكال معادلات ماكسويل المرتكزة على الكمون الكهربائي والكمون المغناطيسي في حل المعادلات بشكل صريح باعتبارها «مسألة قيمة حدية» أو «ميكانيكا تحليلية» أو للاستخدام في ميكانيكا الكم. تؤدي «صياغة موافق التغير» (في الزمكان بدلًا من المكان والزمان بشكل منفصل) إلى ظهور التوافق بين معادلات ماكسويل والنسبية الخاصة. تتوافق «معادلات ماكسويل في الزمكان المنحني»، والتي تُستخدم عادة في فيزياء الطاقة العالية وفيزياء الجاذبية، مع النسبية العامة. في الواقع، طور آينشتاين النسبية الخاصة والعامة للجمع بين سرعة الضوء الثابتة، التي تُعد إحدى نتائج معادلات ماكسويل، ومبدأ أن الحركة النسبية لها أهمية فيزيائية فقط.

مثّل نشر المعادلات توحيد الظواهر الموصوفة سابقًا: المغناطيسية والكهرباء والضوء والإشعاع المصاحب له. منذ منتصف القرن العشرين، يعلم العلماء أن معادلات ماكسويل ليست دقيقة تمامًا، بل تمثل الحد التقليدي لنظرية الكهروديناميكا الكمية الأساسية.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.