نظرية النظم التحريكية

نظرية النظم التحريكية هي جزء من علم الرياضيات تُستخدم لوصف سلوك النظم التحريكية المركبة، وعادةً يكون ذلك من خلال استخدام معادلات تفاضلية أو معادلات فرق. وعند استخدام المعادلات التفاضلية، تُسمى النظرية باسم النظم التحريكية المتواصلة، أما عند استخدام معادلات الفرق فتُسمى النظرية بـالنظم التحريكية المنفصلة. عندما يحدث متغير زمني في مجموعة منفصلة عند بعض الفترات ومتواصلة عند فترات أخرى أو عند أي مجموعة زمنية تقديرية مثل مجموعة كانتور، فنحصل حينها على معادلات حركية على مقاييس زمنية. وربما تصوغ مؤثرات مختلطة بعض المواقف ومن أمثلة هذه المؤثرات المعادلات التفاضلية-الفرقية.

تتعامل النظرية مع السلوك الكيفي طويل المدى للنظم التحريكية وكذلك دراسات حلول معادلات الحركة للنظم والتي هي في الأساس ذات طبيعة ميكانيكية، على الرغم من أن هذا يشتمل على كلٍ من المدارات الكوكبية إضافةً إلى سلوك الدوائر الإلكترونية و حلول للمعادلات التفاضلية الجزئية والتي تظهر في علم الأحياء. وينصب تركيز الكثير من الأبحاث الحديثة حول دراسة نظم الشواش.

ويُطلق على هذا الحقل من الدراسة بالضبط اسم النظم التحريكية, أو نظرية النظم أو بشكلٍ أطول نظرية النظم التحريكية الرياضية والنظرية الرياضية للنظم التحريكية.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.